Diferencia entre revisiones de «Sistemas de archivos»

De Wiki de Sistemas Operativos
Saltar a: navegación, buscar
m (Paso 8.2: Gestionar el pool de servidores)
(Paso 8.3: Gestionar el almacenamiento)
 
Línea 805: Línea 805:
 
gluster volume status
 
gluster volume status
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
En caso de necesitar borrar un volumen de red, puedes invocar:
 +
 +
<syntaxhighlight lang="bash">
 +
gluster volume stop myvol1
 +
gluster volume delete myvol1
 +
</syntaxhighlight>
 +
 +
parando el volumen en primer lugar para luego borrarlo.
  
 
== Paso 8.4: Cliente GlusterFS ==
 
== Paso 8.4: Cliente GlusterFS ==

Revisión actual del 17:12 29 nov 2024

Paso 1: Añadir un disco a la máquina virtual

Vamos a usar cualquier máquina virtual de ubuntu cloud que hayamos usado previamente y vamos a añadir dos discos virtuales para hacer pruebas.

  1. Abrimos la ventana de la máquina virtual a usar
  2. Nos movemos a Vista -> Detalles, y le damos al botón de 'Agregar hardware'
  3. Seleccionamos Almacenamiento, le damos un tamaño de 5GB y en el tipo de dispositivo seleccionamos 'dispositivo de disco'. Con estas opciones, pulsamos Finalizar., y ya tendremos nuestro disco creado.
  4. Repetir el paso anterior y crear otro disco de 4GB

Para crear un nuevo disco virtual desde el intérprete de órdenes:

qemu-img create -f qcow2 mi-disco.img 20G

Para adjuntar este disco a una máquina virtual existente:

virsh attach-disk mi-mv /home/usuario/mi-disco.img vdb --cache none --subdriver qcow2 --config

Esto va a adjuntar el disco virtual creando anteriormente a la máquina virtual cuyo nombre es mi-mv haciendo uso del driver paravirtualizado VirtIO.

Ojo: virsh attach-disk requiere una ruta absoluta al disco virtual.

Posible errores:

  • La máquina virtual a la que se quiere adjuntar el nuevo disco no existe
error: failed to get domain 'mv'

Consulte el listado de máquinas virtuales existentes con virsh.

  • El identificador del disco virtual ya existe:
error: Failed to attach disk
error: XML error: target 'vdb' duplicated for disk sources ...

En este caso, indica que vdb ya está en uso para un disco virtual existente, por lo que debe emplear otro identificador tal como vdc, vdd, etc.

Para ver los discos virtuales de una máquina virtual:

virsh domblklist mv
 Target   Source
----------------------------------------------
 hda      /home/usuario/ubuntu-cloud.img
 vda      /home/usuario/mi-disco.img

Para eliminar un discho de la máquina virtual:

virsh detach-disk mv vda --config

Paso 2: Ver discos en Linux

Volvamos a la vista consola (Vista -> Consola) y arranquemos la máquina (Máquina virtual -> Ejecutar).

Para comprobar los discos añadidos en el paso 1 vamos a utilizar el comando lsblk, el cual nos mostrará una salida similar a la siguiente:

NAME        MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
sr0          11:0    1  1024M  0 rom
vda         252:0    0   2.2G  0 disk
├─vda1      252:1    0   2.1G  0 part /
├─vda14     252:14   0     4M  0 part
└─vda15     252:15   0   106M  0 part /boot/efi
vdb         252:16   0     5G  0 disk
vdc         252:32   0     4G  0 disk

Aqui vemos que tenemos 3 discos:

  • vda: el actual de ubuntu que añadimos al crear la máquina
  • vdb: el disco que añadimos en el paso 1 de 5GB
  • vdc: el disco que añadimos en el paso 1 de 4GB

También vemos que el disco vda tiene 3 particiones: vda1, vda14 y vda15

Paso 3: Creación de particiones en Linux

Vamos a utilizar ahora nuestro disco añadido de 5GB, en el paso anterior deberiamos de haber identificado cual es, en mi caso /dev/vdb, aseguraros cual es el vuestro y comenzaremos a particionar el disco:

fdisk /dev/vdb

Si el disco es nuevo y no ha hecho nada previamente, normalmente viene sin tabla de particiones, así que fdisk se encarga de crear una, seguramente veamos ese mensaje cuando hayamos ejecutado el comando anterior. La tabla de particiones es una pequeña parte del disco que se utiliza para alamacenar la información de las particiones, el formato y si una partición es ejecutable o no.

Recuerda hacer:

partprobe /dev/vdb

para solicitar al sistema operativo que refresque la tabla de particiones.

Una vez hecho esto, veremos que estamos dentro de fdisk (software para particionar un disco), y veremos que este tiene su propia linea de comando.

Ahora veremos la ayuda de fdisk y crearemos una partición de prueba de 3GB

  1. Introducir la letra 'm' y pulsar Intro, así obtendremos el listado de comandos posibles de fdisk.
  2. Introducir 'n' y pulsar Intro para crear una nueva partición. Nos preguntará varios detalles:
    1. Tipo de partición: pulsamos Intro y se asignará primaria por defecto.
    2. Número de partición: pulsamos Intro y se asignará 1 por defecto.
    3. Primer sector: pulsamos Intro para que se asigne por defecto.
    4. Último sector: vamos a crear una partición de 3GB, así que escribimos +3G y pulsamos Intro
  3. Ya está creada nuestra primera partición, aunque los cambios todavía no se han escrito en disco, para ello, necesitaremos aplicar estos cambios, y lo hacemos con el comando 'w' y pulsando Intro.
  4. Ahora si, ya tenemos nuestra partición creada. Vamos a comprobar que el cambio está hecho, usando lsblk por ejemplo, deberíamos de obtener algo similar a la siguiente:
NAME        MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
sr0          11:0    1  1024M  0 rom
vda         252:0    0   2.2G  0 disk
├─vda1      252:1    0   2.1G  0 part /
├─vda14     252:14   0     4M  0 part
└─vda15     252:15   0   106M  0 part /boot/efi
vdb         252:16   0     5G  0 disk
└─vdb1      252:17   0     3G  0 part
vdc         252:32   0     4G  0 disk


Vamos ahora a crear en el disco de 4GB (vdc en mi caso) dos particiones de 2GB cada una, y la partición de 3GB creada anteriormente, vamos a borrarla:

  1. sudo fdisk /dev/vdc
  2. comando 'n' e Intro
  3. Todos los datos por defecto, excepto el último sector, donde pondremos '+2G'
  4. Una vez creada la primera partición, antes de escribir a disco, vamos a crear la segunda partición, repetimos los pasos anteriores. Vamos a tener un problema y cuando lleguemos al último paso, nos dirá que 2GB no es posible. Si tenemos un disco de 4GB, ¿Por qué no nos permite crear dos particiones de 2GB? Exacto, por la tabla de particiones. Lo que haremos en el último paso será dejar el valor por defecto, que será todo el disco sobrante.
  5. Vamos a comprobar antes de escribir los cambios, que todo está bien, comando 'p' e Intro debería de mostrarnos una salida similar a:
Device    Boot   Start     End Sectors Size Id Type
/dev/vdc1         2048 4196351 4194304   2G 83 Linux
/dev/vdc2      4196352 4196351 4194304   2G 83 Linux
  1. Si todo está correcto, pulsamos 'w' e Intro y aplicamos los cambios
  2. Ahora entraremos con el disco /dev/vdb para eliminar la partición: sudo fdisk /dev/vdb
  3. Ahora vamos a eliminar la particion, pulsamos 'd' e Intro. Como solo tenemos una partición, nos la borra directamente, en caso de tener más de una, nos preguntaría cual queremos borrar.
  4. Aplicamos los cambios: 'w' e Intro
  5. Comprobamos que todo ha quedado a nuestro gusto con el comando lsblk
NAME        MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
sr0          11:0    1  1024M  0 rom
vda         252:0    0   2.2G  0 disk
├─vda1      252:1    0   2.1G  0 part /
├─vda14     252:14   0     4M  0 part
└─vda15     252:15   0   106M  0 part /boot/efi
vdb         252:16   0     5G  0 disk
vdc         252:32   0     4G  0 disk
├─vdc1      252:33   0     2G  0 part
└─vdc2      252:34   0     2G  0 part

Paso 4: Formatear partición: crear un sistema de archivos

Hasta ahora solo hemos definido en la tabla de particiones donde comienza y acaba cada partición, pero no podremos utilizarla hasta que no creemos un sistema de archivos en la partición. Para crear un sistema de archivos utilizaremos el comando 'mkfs', y tendremos varias opciones a la hora de crear uno: ext2, ext3, ext4, btrfs, fat, ntfs, etc...

Nosotros creamos un sistema ext4 para /dev/vdc1 y uno fat para /dev/vdc2:

sudo mkfs -t ext4 /dev/vdc1
sudo mkfs -t fat /dev/vdc2

Una vez hecho esto, vamos a comprobar que se han aplicado bien los cambios:

sudo file -s /dev/vdc1
sudo file -s /dev/vdc2

En la salida deberíamos de obtener que tenemos un sistema de ficheros ext4 y otro FAT.

Paso 5: Montar y desmontar particiones en Linux

Tras haber creado en los pasos anteriores unas particiones y formatearlas, vamos a pasar ahora a montarlas para poderles dar uso. En linux montar una partición significará que asignaremos una carpeta del sistema a una partición, y en ella estará todo el contenido del disco.


Mount y umount

Empezaremos utilizando los comandos mount y umount para montar y desmontar particiones. Vamos a montar las particiones /dev/vdc1 y /dev/vdc2, la primera la montaremos en /home/ubuntu/part1 y la segunda en /home/ubuntu/part2:

mkdir /home/ubuntu/part1  # Creamos la carpeta donde vamos a montar la partición
sudo mount /dev/vdc1 /home/ubuntu/part1  # montamos la partición

Lo mismo con /dev/vdc2

mkdir /home/ubuntu/part2
sudo mount /dev/vdc2 /home/ubuntu/part2

Vamos a ver el contenido de las particiones montadas:

ls /home/ubuntu/part1
ls /home/ubuntu/part2

Veremos que tenemos una carpeta lost+found en el sistema ext4, la cual se utiliza para los errores en el sistema de archivos, cuando hay un error y encontramos un fichero sin referencia, este se añadiría dentro de esta carpeta, y existiría la posibilidad de recuperarlo.

Ahora vamos a crear un nuevo fichero dentro de nuestra partición /dev/vdc1, la vamos a desmontar, y vamos a montarla en otro directorio diferente:

sudo touch /home/ubuntu/part1/nuevoFichero  # tenemos que crearlo con sudo porque no tenemos permisos, luego veremos esto
sudo umount /dev/vdc1
ls /home/ubuntu/part1  # el fichero ya no está, la partición fue desmontada
mkdir /home/ubuntu/part3
sudo mount /dev/vdc1 /home/ubuntu/part3
ls /home/ubuntu/part3

Comprobaremos que el fichero creado en /home/ubuntu/part1 lo tenemos ahora en /home/ubuntu/part3, ya que realmente, cuando lo guardamos, estaba en la partición que montamos.

También podemos ver que utilizando el comando lsblk, podremos observar donde está montada la partición.


Montaje automático al iniciar el sistema

Ahora veremos como automatizar el proceso de montaje cada vez que se inicia el sistema, ya que sería tedioso tener que montar todos las particiones cada vez que apagamos y encendemos nuestra máquina.

El proceso de automatizado suele hacerse dentro del fichero /etc/fstab, veamos su contenido:

cat /etc/fstab

Cada fila contiene un montaje de una partición, la cual contiene:

  • Identificación de la partición: en este caso se está utilizando una etiqueta de la partición, pero podemos utilizar cualquier cosa que identifique al dispositivo, como el uuid o la localización (/dev/vdc1)
  • Punto de montaje: donde se montará el dispositivo
  • Sistema de archivos: ext4, fat
  • Opciones: aquí pondremos las diferentes opciones de montaje, como por ejemplo montar para solo lectura, dar permisos a un usuario para utilizar la partición, etc. Hay que tener en cuenta que cada sistema tiene sus opciones.
  • backup: si está a cero, no haremos backup
  • chequeo: si está a cero no se hace chequeo al iniciar

Vamos a añadir unas líneas para montar automáticamente las particiones al iniciar:

Utilizando el editor que prefieras, añadir lo siguiente en el fichero /etc/fstab. Importante hacerlo con sudo para que nos permita escribir en el fichero:

/dev/vdc1 /home/ubuntu/part1 ext4 rw,user,exec 0 0
/dev/vdc2 /home/ubuntu/part2 vfat umask=000 0 0

Una vez guardado los cambios, vamos a aplicarlos sin reiniciar, para comprobar que funciona correctamente:

mount -a  # aplica los cambios de fstab sin necesidad de reiniciar
lsblk  # comprobar que está bien montado

Ahora vamos a comprobar si nuestro usuario tiene permisos para escribir:

touch /home/ubuntu/part1
touch /home/ubuntu/part2

En el primero no nos dejará y en el segundo no tendremos problemas. Esto funciona así porque los sistemas ext4, para poder tener permisos de escritura, tenemos que darlo sobre el sistema de ficheros, mientras que el sistema fat, tiene la opción umask que ya hace el trabajo. Para tener permisos de escritura con nuestro usuario en la partición, tendremos que darle permiso a la partición para poder escribir en ella, por ejemplo, utilizando el comando chown:

sudo chown ubuntu /home/ubuntu/part1

Si probamos ahora, podremos escribir en la partición de ext4, y al haber dado permisos, ya nos funcionará siempre:

touch /home/ubuntu/part1

Ahora, vamos a desmontar todo y a reiniciar la máquina para comprobar que está todo funciona.

sudo umount /dev/vdc1
sudo umount /home/ubuntu/part2  # Es otra forma de desmontar, dando el punto de montaje
lsblk  # comprobamos que no estén montadas

Reiniciamos la máquina (Máquina virtual -> Apagar -> Reiniciar) y comprobamos:

lsblk

Paso 6: Creación de un RAID

En este apartado vamos a configurar un RAID 1 (espejo) que nos permite aumentar la fiabilidad. La idea es que si uno de los discos del RAID deja de funcionar, los datos en el sistema de fichero siguen estando disponibles con lo que disponemos de algo de tiempo para reemplazar el disco defectuoso.

Paso 6.1: Añadir discos a la máquina virtual

Como explicamos en el Paso 1, vamos a añadir a una máquina virtual 2 discos duros de 5GB cada uno.

Paso 6.2: Instalación de la herramienta de mdadm

Por defecto, esta herramienta viene instalada en el ubuntu cloud server, pero en el caso de utilizar otra distribución diferente, necesitaremos instalarla:

sudo apt install mdadm

Paso 6.3: Utilización de la herramienta de mdadm

Empezamos escribiendo el comando, y luego pasamos a explicar los detalles:

sudo mdadm --create --verbose /dev/md0 --level=1 --raid-devices=2 /dev/vdb /dev/vdc

Explicamos los parámetros:

  1. --create: para crear el raid
  2. --verbose: nos muestra más información del proceso
  3. /dev/md0: El nombre del nuevo raid, normalmente se utiliza md0
  4. --level=1: crea un raid 1 que es el que queremos
  5. --raid-devices=2: cantidad de dispositivos que vamos a utilizar, 2 en nuestro caso
  6. /dev/vdb1: Nombre de la partición 1
  7. /dev/vdc1: Nombre de la partición 2

Una vez ejecutado el comando, creará el RAID 1, pasemos ahora a ver los detalles:

sudo mdadm --detail /dev/md0

Esto nos mostrará la información del RAID, lo que a nosotros nos interesa son las últimas líneas:

           Name : ubuntu:0  (local to host ubuntu)
           UUID : e40ba520:5ed1bd37:5c818550:03a18368
         Events : 17

Number   Major   Minor   RaidDevice State
   0       252     17        0      active sync   /dev/vdb1
   1       252     33        1      active sync   /dev/vdc1

Aqui vemos el UUID de nuestro RAID, y también veremos en las dos última líneas, las dos particiones, las cuales están marcadas con active sync, esto quiere decir que están activos y sincronizados. Puede que si hacemos muy rápido este comando, muestre algo diferente porque tarda un poco en sincronizar la primera vez, pero pronto estará.

Paso 6.4: Guardar la configuración del RAID

Vamos a modificar la configuración, tendremos que editar el fichero /etc/mdadm/mdadm.conf y debajo de la línea que pone '# definitions of existing MD arrays', añadir lo siguiente:

ARRAY /dev/md0 UUID=e40ba520:5ed1bd37:5c818550:03a18368

Recuerda que el UUID lo puedes consultar con la orden:

mdadm --detail /dev/md0

Busca el campo UUID.

Tras actualizar /etc/mdadm/mdadm.conf, tienes que invocar la siguiente orden:

update-initramfs -u

Esto asegura que en el próximo arranque el RAID usa la unidad /dev/md0.

Paso 6.5: Particionar y formatear el RAID

Como explicamos en los Pasos 2, 3 y 4, vamos a particionar el disco RAID:

lsblk  # comprobamos los dicos, en mi caso sería md0
sudo fdisk /dev/md0

Ahora vamos a formatear la partición:

sudo mkfs -t ext4 /dev/md0p1

Paso 6.6: Montar el RAID

Como previamente hemos hecho, crearemos una carpeta donde montar el RAID y lo montaremos usando el comando mount:

mkdir /home/ubuntu/datos
sudo mount /dev/md0p1 /home/ubuntu/datos
sudo chown -R ubuntu /home/ubuntu/datos

Así ya tenemos nuestro RAID montado y podemos utilizarlo, vamos a probar a escribir en él.

touch /home/ubuntu/datos/fichero

Esto está funcionando, pero como comentamos en uno de los pasos previos, el comando mount solo montará el raid temporalmente, para automatizar este montado al arrancar, tendremos que añadir la siguiente línea a /etc/fstab:

/dev/md0p1 /home/ubuntu/datos ext4 defaults

Paso 6.7: Comprobar tolerancia a fallos

Vamos a probar que sin un disco duro, todo sigue funcionando bien, ya que al tener un RAID 1 y tener los datos en espejo, no debería de haber problemas.

La siguiente orden marca el disco /dev/sdb como dañado:

mdadm --fail /dev/md0 /dev/sdb

Podemos ver con la siguiente orden que el disco aparece como faulty:

mdadm --detail /dev/md0

Sin embargo, podemos ver que el sistema de ficheros sigue montado y el contenido sigue estando disponible.

ls /home/ubuntu/datos/

Podéis retirar definitivamente el disco defectuoso con la orden:

mdadm --remove /dev/md0 /dev/sdb

Para volver a incluirlo en el RAID:

mdadm --add /dev/md0 /dev/sdb

Podéis consultar que está sincronizando con la orden:

mdadm --detail /dev/md0

Que mostrará el disco /dev/sdb en estado spare rebuilding y mostrará el porcentaje de sincronización.

Finalmente, para destruir el RAID, basta hacer:

mdadm --stop /dev/md0

Paso 7: Gestión volúmenes (Logic Volume Manager, LVM)

Logic Volume Manager (LVM) es una capa de software que permite crear volúmenes lógicos y mapearlos de manera sencilla sobre dispositivos físicos.

La instalación de LVM es sencilla mediante la orden:

sudo apt-get install lvm2

La gestión de LVM se basa en tres conceptos básicos:

  • Volúmenes físicos (PV): Representa una unidad de almacenamiento que aprovisiona espacio de almacenamiento para el volumen lógico que vamos a crear.
  • Grupo volumen (VG): Representa un almacén de espacio para LVM. Un VG estará compuesto por varios PV, pudiendo tener tantos VG como sean necesarios.
  • Volumen lógico (LV): Representan unidades lógicas creadas a partir de VG creado previamente. Se podrán crear tantos LV como sean necesarios para un VG. La creación de un LVM genera un archivo especial en /dev, con la forma /dev/nombre_del_grupo/nombre_volumne_logico. El mapeo de espacio desde un LV hasta un PV es configurable pudiendo ser: Lineal, RAID, Cache, ...

Paso 7.1: Creación de volumen físico LVM (PV)

Para listar las unidades de almacenamiento disponibles en el sistema, empleamos la siguiente orden:

lsblk

En virtualbox podemos crear nuevas unidades almacenamiento y añadirlas a la máquina virtual.

Para crear un volumen físico en la unidad /dev/sdb, empleamos la orden:

pvcreate /dev/sdb

Recuerde que la unidad /dev/sdb tiene que estar en desuso.

Para ver los volúmenes físicos existentes, empleamos la orden:

pvscan

Para obtener más información:

pvdisplay

Para eliminar un PV, por ejemplo /dev/sdb:

pvremove /dev/sdb

Si reporta error indicando que está en uso, mueve el contenido del volumen que quieres borrar a otro de los volúmenes físicos que forman parte del grupo:

pvmove /dev/sdb /dev/sdc

y prueba a borrarlo de nuevo. La orden lsblk ofrece información acerca del uso de los volúmenes físicos.

Paso 7.2: Creación de grupo de volumenes LVM (VG)

Para crear un grupo, empleamos el comando vgcreate:

vgcreate vg_prueba /dev/sdb /dev/sdc

Esto añade al grupo 'vg_prueba' los volúmenes sdb y sdc, haciendo que la capacidad del grupo sea la capacidad agregada de los PV añadidos.

Para eliminar un grupo vgremove:

vgremove vg_prueba

Para extender un grupo creado (por ejemplo, vg_prueba) con más PV (por ejemplo /dev/sde) usamos el comando vgextend:

vgextend vg_prueba /dev/sde

Para reducir la capacidad de un grupo creado (por ejemplo, vg_prueba) basta con usar el comando vgreduce indicando la unidad (PV) a quitar, por ejemplo /dev/sde:

vgreduce vg_prueba /dev/sde

Para mostrar todos los grupos de volumenes existentes

vgscan

Paso 7.3: Creación de volumen lógico (LV)

Para crear un volúmen lógico, empleamos la orden:

lvcreate --name volumen1 --size 100MB vg_prueba

A partir de este momento hay una unidad que se presenta como /dev/mapper/vg_prueba-volumen1.

Podemos ahora formatear el volumen lógico:

mkfs.ext4 /dev/vg_prueba/volumen1

y montarlo para almacenar información:

mount /dev/vg_prueba/volumen1 /mnt

Puedes extender un volumen lógico en 1 Gbyte de más:

lvextend --size +1GB /dev/vg_prueba/volumen1

Justo después tienes que redimensionar el sistema de ficheros:

resize2fs /dev/vg_prueba/volumen1

Puedes comprobar con:

df -h

que el sistema de ficheros en volumen1 ocupa ahora todo el volumen lógico.

Reducir el tamaño de un volumen lógico es un poco más complicado, ¡podrían perder datos si no se realiza correctamente!

Primero, desmontamos el volumen:

umount /mnt/volumen1

reducir el tamaño del sistema de ficheros, comprobamos la integridad del sistema de ficheros:

e2fsck -f /dev/vg_prueba/volumen1

Y lo redimensionamos (reducimos de tamaño):

resize2fs /dev/vg_prueba/volumen1 500M

Ahora ya, por último lugar, puedes reducir el tamaño del volumen:

lvreduce --size 500M /dev/vg_prueba/volumen1

Para comprobar que hay ido todo bien, vuelve a redimensionar el sistema de ficheros para que ocupe todo el espacio disponible.

resize2fs /dev/vg_prueba/volumen1

Y puedes volver a montar el sistema de ficheros:

mount /dev/vg_prueba/volumen1 /mnt/volumen1

con

df -h

para comprar el nuevo tamaño disponible de sólo 500 MBytes.

Es posible borrar un volumen lógico:

lvremove /dev/vg_prueba/volumen1

asegúrate que no está montando, de lo contrario esta órden reportará que el volumen está en uso.

Paso 8: GlusterFS

GlusterFS es un sistema de archivos cliente-servidor de almacenamiento en red escalable. También puede consultar official documentation para más detalles.

Algunos conceptos:

  • Nodo: máquina que proporciona espacio de almacenamiento.
  • Pool: Un conjunto de nodos.
  • Cliente: máquina en la que se monta un volumen

y con respecto al almacenamiento:

  • Brick: Unidad mínima de almacenamiento (dada por un sistema de archivos exportado por un nodo). En cada nodo se define un brick.
  • Volumen: unidad lógica compuesta por bricks de uno o varios nodos.

Paso 8.1: Instalar el servidor GlusterFS

Para instalar Glusterfs:

apt install glusterfs-server
systemctl enable glusterd
systemctl start glusterd

Puedes consultar los logs en: /var/log/glusterfs/glusterd.log

Puedes comprobar que el servicio está activo verificado que el puerto TCP/24007 está activo:

ss -ltn

La orden ss muestra con esta opción los servicios TCP (-t) que están escuchando (-l, de listen) y usando la notación numérica (-n).

Si vamos a construir un pool con dos nodos, tenemos que editar /etc/hostname y /etc/hosts de lo contrario tendremos problemas al crear un pool.

Si clonas una máquina virtual tras la instalación de los paquetes, tienes que volver a crear el identificador único del nodo tal aquí.

Paso 8.1.1. Editar /etc/hostname

Gluster requiere nombres únicos para identificar a las máquinas que forman parte del pool:

nano /etc/hostname

Y pones ubuntu1.

Tras esto, hay que reiniciar el sistema para que el cambio de nombre surta efecto.

Para la segunda máquina, pones ubuntu2. Y así sucesivamente.

Es fundamental que todas las máquinas del pool tengan nombres únicos, de lo contrario gluster no va a funcionar.

Paso 8.1.2. Editar el /etc/hosts

Suponiendo que el nodo 2 tiene la dirección IP 192.168.122.75 y el nodo 1 tiene la IP 192.168.122.175, hay que editar /etc/hosts con:

127.0.0.1 localhost
192.168.122.175 ubuntu1
192.168.122.75 ubuntu2

en todas las máquinas que formen parte del pool.

Paso 8.2: Gestionar el pool de servidores

Para añadir el nodo 1 y al 2 al mismo pool, desde el nodo 2 hay que invocar:

gluster peer probe ubuntu1

Ahora tienes que comprobar la lista de nodos del clúster en el pool:

gluster pool list

que muestra desde el nodo 1 lo siguiente:

UUID                                   Hostname     State
ca4b43a2-aa4b43a2-bb3422cc-a4540010    ubuntu2     Connected
ba4bbba2-bb4bbba2-cc3422cc-aaabff67    localhost    Connected

Comprobar el estado de los nodos:

gluster peer status

que muestra:

Number of peers: 1

Hostname: ubuntu2
Uuid: ca4b43a2-aa4b43a2-bb3422cc-a45400S10
State: Peer in Cluster (Connected)

Es posible borrar un nodo mediante la siguiente orden:

gluster peer detach ubuntu2

Paso 8.3: Gestionar el almacenamiento

En ambos nodos cree una carpeta:

mkdir -p /data/myvol1/brick1

En uno de los nodos, puede crear el volumen:

gluster volume create myvol1 replica 2 ubuntu1:/data/myvol1/brick1 ubuntu2:/data/myvol1/brick1

Nota: Si la carpeta está en el raíz, entonces hay que añadir force al final de la orden anterior.

Y para iniciar el volumen:

gluster volume start myvol1

Para listar los volúmenes existentes:

gluster volume list

Puede comprobar la información y el estado del volumen:

gluster volume info
gluster volume status

Además, cada nuevo volumen de glusterfs abre un puerto TCP que se puede observar con:

ss -ltnp

La opción -p muestra el proceso asociado a dicho puerto, se puede observar que es un proceso de glusterfsd. Esta información sobre los puertos TCP asociados al volumen también aparece en la información destatus:

gluster volume status

En caso de necesitar borrar un volumen de red, puedes invocar:

gluster volume stop myvol1
gluster volume delete myvol1

parando el volumen en primer lugar para luego borrarlo.

Paso 8.4: Cliente GlusterFS

Primero instala el paquete de cliente de GlusterFS.

apt install glusterfs-client

Desde el cliente, puede montar el volumen con:

mount -t glusterfs ubuntu1:/myvol1 /mnt

Paso 9: Redimensionar tamaño del disco virtual de imagen Ubuntu cloud ya importada en libvirt

Con la máquina virtual apagada, desde el anfritrión:

qemu-img resize ubuntu-18.04-server-cloudimg-arm64.img +8G

Para darle 8 GBytes más de espacio.

Ahora, desde la máquina virtual, aumentamos el tamaño de la partición:

sudo growpart /dev/sda 1

Y, a continuación, redimensionamos el sistema de ficheros:

sudo resize2fs /dev/sda1 +8G