
89

4
Monitors

� REAL MONITORS AND JAVA MONITORS

� CLASS Monitor IN THE Thread PACKAGE

� EXAMPLES USING Monitor OBJECTS

� IMPLEMENTATION OF Monitor, Condition, AND
MonitorLock

� THE MULTIPLE READER–WRITER MONITORS

Monitors, at their most general, are classes that control threads’ access to
resources. Java synchronization is based on the variety of monitors that were developed in
the early 1970s by Per Brinch-Hansen and C. A. R. Hoare, but Java synchronization is not
as well developed as Brinch-Hansen and Hoare monitors are.

In this chapter, we will compare Java’s synchronization to monitors. We will present our
Monitor class. This class will allow you to use full-monitor facilities in Java, although it
will not allow the compiler to check your program for correctness, as Brinch-Hansen’s and
Hoare’s do. The implementation of the Monitor class will itself be instructive on how to
use Semaphores.

Real Monitors and Java Monitors
When Brinch-Hansen and Hoare did their work, they were faced with the following prob-
lems: Concurrent programs were unreliable and hard to write. Semaphores were already

Monitors.fm Page 89 Thursday, July 13, 2000 9:39 PM

90 High-Performance Java Platform Computing

understood; Dijkstra had developed them half a decade earlier, but semaphores were often
used incorrectly, and a compiler could provide no help on using them.

What Brinch-Hansen was after was a facility for synchronizing concurrent programs that
would be easy to use and could also be checked by a compiler.

The first requirement for this facility is that while they are concurrently executing, threads
(processes) must be accessing different sets of variables. When they have to access the
same variables, they must be granted mutually exclusive access. Moreover, one thread
must be able to wait for a condition that another thread can cause.

Brinch-Hansen and Hoare called their solution monitors. They gave this definition of a
monitor:

A monitor is essentially a shared class with explicit queues.

Thus, it has two components: a shared class and explicit queues. We will consider them
one at a time.

Shared Classes. The effect of a shared class can occur in Java by creating a class in
which all fields are private and all methods are synchronized.

In a monitor, the only variables that can be accessed by more than one thread are the fields
of a monitor. Since the fields are private, they cannot be accessed outside the monitor.
Since the methods of the monitor are synchronized, the accesses inside the monitor are
mutually exclusive. This meets the requirement that threads have mutually exclusive
access to shared variables.

Explicit Queues. Threads must be able to wait for other threads to cause conditions.
In a monitor, the conditions are represented by condition variables. These variables con-
tain queues of threads waiting for the conditions to hold.

In the bounded-buffer example, there are two conditions that a thread could be waiting for.
If a thread wishes to read a value from the buffer, the buffer must first contain a value. If a
thread wishes to place a value in the buffer, the buffer must not be full.

Java has only one queue for threads waiting at an object, so in our bounded-buffer code,
we must notify all waiting threads when we put a value into the buffer (making it non-
empty) or remove a value (making it nonfull). We must wake up all of the threads in order
to see if the buffer permits their execution. This is inefficient.

Using true monitors, we would use two condition variables. When we put a value in the
queue, we would only wake up one thread waiting for the queue to be nonempty. When we
remove a value, we would only wake up one thread waiting for the queue to be nonfull.
The code to do this in a dialect of Pascal might be
 shared class BoundedBuffer (size: integer)
 var
 notEmpty, notFull: Condition;

Monitors.fm Page 90 Thursday, July 13, 2000 9:39 PM

4 • Monitors 91

 hd, tl: integer;
 buffer: array 0 .. size-1 of Object;
 procedure put(v: Object)
 begin
 if tl - hd >= buffer.length then
 await notFull;
 buffer[tl mod buffer.length] := v;
 tl:=tl+1;
 signal notEmpty;
 end
 function get(): Object
 begin
 var v: Object;
 if tl=hd then await notEmpty;
 v := buffer[hd mod buffer.length];
 hd:=hd+1;
 signal notFull;
 return v;
 end
 begin
 hd:=0;
 tl:=0;
 end.

Notice that not only is there more than one queue that a thread can wait on, but also that
the threads do not wait in loops. In Java, a thread waits in a while loop testing the condi-
tion, for example,

while (!condition) wait();

In Java, the thread awakened by notify() or notifyAll() does not get immediate
control of the lock. By the time the thread runs, the condition may no longer be true, so it
must check the condition again. With a monitor, however, the shared object is immediately
handed off to the thread that has been awakened, so that when the thread starts running,
the condition is guaranteed to still be true.

Overall. Monitors provide greater security from system breakdown than Java does.
Compilers for languages that support monitors can assure that all fields that can be
accessed by more than one thread are protected by monitors. They can also assure mutual
exclusion to those fields. They can check for the possibility of deadlock due to cycles in
the graph of monitor calls. The implementation of these compilers can guarantee that a
thread waiting for a condition will gain access to the monitor immediately, so the condi-
tion will still be true.

Despite Java’s goal of reliability and catching as many errors at compile time as possible,
it provides nowhere near the same level of support for writing reliable concurrent pro-
grams that monitors provide.

This led Brinch-Hansen to express a great disappointment with Java’s synchronization.

Monitors.fm Page 91 Thursday, July 13, 2000 9:39 PM

92 High-Performance Java Platform Computing

He writes:
Java’s most serious mistake was the decision to use the sequential part of the language to
implement the run-time support for the parallel features.
In 1975, Concurrent Pascal demonstrated that platform-independent parallel programs (even
small operating systems) can be written as a secure programming language with monitors. It
is astounding to me that Java’s insecure parallelism is taken seriously by the programming
language community a quarter of a century after the invention of monitors and Concurrent

Pascal. It has no merit.1

Class Monitor in the Thread Package
The thread package provides the Monitor class with condition variables similar to those
defined by Hoare and Brinch-Hansen. The condition variables are provided by the inner
class Condition. Of course, the syntax is not the same, and the compile-time checking
provided by monitors is not possible.

To use a monitor to protect your class, you can have your class extend Monitor, as in the
following bounded-buffer example:
 class BoundedBuffer3 extends Monitor{
 Condition notEmpty=new Condition();
 Condition notFull=new Condition();
 volatile int hd=0,tl=0;
 Object[] buffer;
 public BoundedBuffer3(int size) {
 buffer=new Object[size];
 }
 public void put(Object v)
 throws InterruptedException {
 enter();
 if(tl - hd >= buffer.length) notFull.await();
 buffer[tl++ % buffer.length] = v;
 notEmpty.signal();
 leave();
 }
 public Object get()
 throws InterruptedException {
 enter();
 Object v;
 if (tl==hd) notEmpty.await();
 v = buffer[hd++ % buffer.length];
 notFull.signal();
 leave();
 return v;
 }
 }

1 Brinch-Hansen, Per, “Java’s Insecure Parallelism,” ACM SIGPLAN Notices, 34(4) April
1999.

Monitors.fm Page 92 Thursday, July 13, 2000 9:39 PM

4 • Monitors 93

Or, you can use a separate Monitor object:
 class BoundedBuffer4 {
 Monitor mon = new Monitor();
 Monitor.Condition notEmpty = mon.new Condition();
 Monitor.Condition notFull = mon.new Condition();
 volatile int hd=0,tl=0;
 Object[] buffer;
 public BoundedBuffer4(int size) {
 buffer=new Object[size];
 }
 public void put(Object v)
 throws InterruptedException {
 mon.enter();
 if(tl - hd >= buffer.length) notFull.await();
 buffer[tl++ % buffer.length] = v;
 notEmpty.signal();
 mon.leave();
 }
 public Object get()
 throws InterruptedException {
 mon.enter();
 Object v;
 if (tl==hd) notEmpty.await();
 v = buffer[hd++ % buffer.length];
 notFull.leaveWithSignal();
 return v;
 }
 }

A Monitor must be entered with a call to the method enter() and exited with a call to
the method leave(). You may enter the same monitor more than once, for example,
calling one monitor-protected method from another. Of course, you must eventually leave
as many times as you enter.

Condition is an inner class. It must be created within a monitor object. It represents a
condition that a thread may wish to wait on.

To wait for condition C to hold, a thread calls
 C.await();

To signal that the condition holds, a thread calls
 C.signal();

If one or more threads are awaiting the condition at the time of a signal, one of the threads
will be given immediate control of the monitor. The thread executing the signal() will
wait to reacquire the monitor.

To simultaneously signal a condition and leave the monitor, you can call
leaveWithSignal(). It is more efficient than a signal() followed by a leave(),

Monitors.fm Page 93 Thursday, July 13, 2000 9:39 PM

94 High-Performance Java Platform Computing

since the executing thread does not have to wait to reacquire the monitor before executing
the leave(). The method is called with
 C.leaveWithSignal();

Be sure that you declare the fields of the monitor-protected class to be volatile. A Java
compiler is permitted to cache fields in registers. This causes problems for concurrency,
since one thread could change its cached copy of a shared field without storing it into
memory. Then another thread would not see the change in its own cached copy or in mem-
ory. A thread, however, is forced to synchronize shared fields with their copies in memory
when entering or leaving synchronized sections of code or when executing wait,
notify, or notifyAll. This permits concurrent threads to communicate. Unfortu-
nately, when trying to use other facilities to provide synchronization, such as the
Monitor class, the compiler doesn’t know to synchronize its cache with memory, so two
threads trying to communicate through a monitor-protected class may not be able to see
each other’s changes. But if the fields are declared volatile, the compiler will store
into memory on assignment and fetch from memory on access. This may slow down exe-
cution, but it will permit threads to communicate.

Monitor’s Methods

 A thread enters a monitor by calling the enter() method. It must call this before

accessing the fields of the protected object. The fields must be declared volatile for
reasons already given.

A thread leaves the monitor by calling the method leave(). A thread must not access

fields of the protected object after calling leave(). Leave throws
MonitorException if the thread executing this does not have the monitor locked.

To leave the monitor temporarily, a thread may call release(). Release returns a
MonitorLock object that can be used to reenter later. Note that if the thread has entered
several monitors, it can release and reacquire any or all of them, no matter where it is in
the program.

public void enter()

public void leave()
 throws MonitorException

Monitors.fm Page 94 Thursday, July 13, 2000 9:39 PM

4 • Monitors 95

MonitorLock contains the entry count, the number of times the monitor has been
entered, but not yet left, and the identification of the monitor and the thread that had it
locked. MonitorLock’s reacquire() method is called reentered the monitor later.

Release throws MonitorException if the thread executing this does not own the
monitor.

Interface MonitorCondition’s Methods

Interface MonitorCondition is implemented by class Monitor.Condition (i.e.,
the local class Condition within class Monitor). To create a MonitorCondition
in monitor M, call M.new Condition(). The purpose of MonitorCondition is to
allow threads to wait for conditions to hold and to signal that the conditions hold.

To wait for the condition to hold, a thread calls the method await(). This method throws

InterruptedException if interrupted while waiting, and MonitorException if
the executing thread does not own this Monitor.

A thread calls the method signal() to signal that the condition has occurred. If there

are any waiting threads, it will wake up one of them to resume execution,
hand over the monitor to it, and itself wait to reenter the monitor. Signal throws
MonitorException if the executing thread does not own the Monitor.

The method leaveWithSignal() simultaneously signals a condition and leaves the
monitor. It is equivalent to
 cond.signal(); mon.leave();

public MonitorLock release()
 throws MonitorException

public void await()
 throws java.lang.InterruptedException,
 MonitorException

public void signal()
 throws MonitorException

Monitors.fm Page 95 Thursday, July 13, 2000 9:39 PM

96 High-Performance Java Platform Computing

If there are any waiting threads, it signals one of them to resume execution and hands over
the monitor to it.

If the current thread has entered the monitor only once, leaveWithSignal() is faster
than a call to signal() followed by a call to leave(). The executing thread does not
have to enter the monitor again just to leave it. However, if this thread has entered the
monitor more than once, leaveWithSignal() behaves like signal() followed by
leave(). After the signaled thread has run, the signaling thread will reenter the monitor
to complete its execution.

The method leaveWithSignal() throws InterruptedException if the thread
is interrupted while trying to reenter the monitor. It throws MonitorException if the
thread executing this is not inside the Monitor.

Interface MonitorLock

The Lock class within Monitor (Monitor.Lock) has only one method:
reacquire(). It is used to enter the monitor again after an earlier release(). It

throws InterruptedException if the thread is interrupted while waiting to enter. It
throws MonitorException if the thread that called reacquire() wasn’t the thread
that released the monitor.

A Monitor.Lock object contains a reference to the thread that executed release(),
the monitor it released, and the count of the number of locks it held on the monitor. The
reacquire() method reestablishes all the locks the thread had on the monitor.

MonitorLocks and the methods release() and reacquire() are not part of the
original specification of monitors. Almost certainly, the designers of the monitors concept
would not approve of them. They were added as a possibility for avoiding deadlock. They
allow a thread to release several monitors if it must wait for a condition.

public void leaveWithSignal()
 throws MonitorException

public void reacquire()
 throws MonitorException

Monitors.fm Page 96 Thursday, July 13, 2000 9:39 PM

4 • Monitors 97

Examples using Monitor Objects
You’ve already seen two implementations of a bounded buffer implemented using moni-
tors. We’ll show Monitor objects being used for implementations of SimpleFuture
(see Example 3-18) and a subset of SharedTableOfQueues (whose full implementa-
tion is described in the chapter entitled “Shared Tables of Queues”).

SimpleFuture

The code for our implementation of SimpleFuture using a Monitor object is shown
in Example 4–1. Its fields are

• value: This is the value stored in the future. To indicate that there is currently no
value present, the value field points to the future object itself. (The theory is that
one value that the user will never wish to put in the future is the future itself.)

• is_set: This is a condition variable. Threads that try to get the value before it is set
wait on this condition.

Recall that a future is a variable that can be assigned only once. When threads attempt to
fetch a value from the future, they are delayed until the value has been assigned. In the
Java implementation, we could release all threads with a notifyAll() method call.
With monitors, we cannot awaken all at the same time.

Let’s examine the implementation of methods isSet, getValue, and setValue.

isSet(). The way we determine whether a value has been set is by examining the
value field. If it references this SimpleFuture itself, then there is no value present.

The other conspicuous trick in isSet() is using try...return...finally...
leave to leave the monitor after returning the value. This may not be as obvious as sav-
ing the value to be returned in a variable, leaving the monitor, and then executing a return
statement.

setValue(). The if statement at the top of the code tests to see if the future has
already been assigned a value and, if so, to refuse to reassign it. If the value hasn’t been set
yet, setValue() does the assignment and hands off the monitor to one of the waiting
threads (if there are any). It does not loop and wake them all up. Each thread that is awak-
ened hands off the monitor to the next waiting thread.

getValue(). Method getValue() is forced to wait if the value hasn’t been
assigned yet, but can return immediately if the value has been. It will throw an
InterruptedException if it is interrupted while waiting. The try...catch handles
leaving the monitor while interrupted.

As explained for setValue(), the call to leaveWithSignal() hands off the moni-
tor to another waiting thread. Each of the waiting threads hands off the monitor to the next

Monitors.fm Page 97 Thursday, July 13, 2000 9:39 PM

98 High-Performance Java Platform Computing

as it exits. Since leaveWithSignal() is equivalent to leave()when no threads are
waiting, it is okay to call it even if there are no threads waiting.

SharedTableOfQueues

This implementation of a subset of SharedTableOfQueues is a subclass of
Monitor. Its overall structure is shown in Example 4–2. It uses a hash table to look up
the queues. The queues themselves are represented by the local class Folder. (The name
was chosen for historical reasons: It was used in the Memo system, which provides a dis-
tributed memory communication system based on a shared table of queues.)

Example 4–1 Class SimpleFuture

public class SimpleFuture extends Monitor {
 private volatile Object value;
 private Condition is_set=new Condition();
 public SimpleFuture() {value=this;}
 public SimpleFuture(Object val) {value=val;}
 public Object getValue()
 throws InterruptedException {
 enter();
 try {
 if (value==this) is_set.await();
 is_set.leaveWithSignal();
 return value;
 } catch (InterruptedException ie) {
 leave();
 throw ie;
 }
 }
 public boolean isSet() {
 enter();
 try {
 return (value!=this);
 } finally {leave();}
 }
 public void setValue(Object val) {
 enter();
 if (value!=this) {
 leave();
 return;
 }
 value=val;
 is_set.leaveWithSignal();
 }
}

Monitors.fm Page 98 Thursday, July 13, 2000 9:39 PM

4 • Monitors 99

The class Folder is used strictly as a data structure. It has no methods. Its fields are

• q: This is the actual queue. It is an object of class QueueComponent which is used
in other classes in the thread package as well as well.

• notEmpty: This is the Condition that the queue, q, is not empty. Threads
calling get()wait for this condition. This condition is bound to the surrounding
SharedTableOfQueue’s Monitor.

• numWaiting: This field counts the number of waiting threads. It is used to decide
when to remove folders. If there are no values in the queue and no threads waiting, the
folder may be removed; it will be created in exactly the same state if it is referenced
again.

The methods are implemented as follows:

put(). The put(key, value) method (see Example 4–3), puts a value into the
queue associated with a key. It uses a hash table to look up the queue, represented by a
Folder object. The queue has to be created if one doesn’t already exist. The put()
method leaves the monitor signaling the folder’s notEmpty condition.

get(). The get(key) method has to accomplish several things:

• If the key does not already have a folder, one is created.

• Field numWaiting is incremented before this thread waits for the queue to have
something in it and is decremented afterwards.

Example 4–2 Class SharedTableOfQueues

class SharedTableOfQueues extends Monitor {

 Hashtable tbl=new Hashtable();

 private class Folder {

 volatile QueueComponent q=new QueueComponent();

 volatile Condition notEmpty=new Condition();

 volatile int numWaiting=0;

 }

 public void put(Object key, Object value) { ... }

 public Object get(Object key)
throws InterruptedException {... }

 public Object getSkip(Object key) {... }

}

Monitors.fm Page 99 Thursday, July 13, 2000 9:39 PM

100 High-Performance Java Platform Computing

• After getting a value from the queue, if the queue is empty and there are no threads
waiting to remove something from it, get() removes the queue.

Example 4–3 The SharedTableOfQueues method put()

 public void put(Object key, Object value) {

 enter();

 Folder f = (Folder)tbl.get(key);

 if (f==null) tbl.put(key,f=new Folder());

 f.q.put(value);

 f.notEmpty.leaveWithSignal();

 }

Example 4–4 The SharedTableOfQueues method get()

 public Object get(Object key)

 throws InterruptedException {

 Folder f=null;

 enter();

 try {

 f=(Folder)tbl.get(key);

 if (f==null) tbl.put(key,f=new Folder());

 f.numWaiting++;

 if (f.q.isEmpty()) f.notEmpty.await();

 f.numWaiting--;

 return f.q.get();

 } finally {

 if (f!=null &&

 f.q.isEmpty() &&

 f.numWaiting==0)

 tbl.remove(key);

 leave();

 }

 }

Monitors.fm Page 100 Thursday, July 13, 2000 9:39 PM

4 • Monitors 101

getSkip(). Method getSkip(key)returns immediately, whether or not the
queue contained a value. If there is no folder associated with the key or if the queue is
empty, it simply returns null. Its code is shown in Example 4–5.

As with get(), getSkip() removes the queue if it is empty and no other threads are
waiting to get a value from it.

Implementation of Monitor, Condition, and MonitorLock
The overall structure of class Monitor is shown in Example 4–6.

The Monitor class has three fields. The Semaphore, monitorEntry, gives exclusive
access to the monitor:

• monitorEntry.down(): locks the monitor on entry,

• monitorEntry.up(): unlocks the monitor on exit.

The current field references the thread that currently possesses the monitor. It is null if
the monitor isn’t currently owned by any thread. The monitorEntryCount field

Example 4–5 SharedTableOfQueues method getSkip()

 public Object getSkip(Object key) {

 Folder f=null;

 enter();

 try {

 f=(Folder)tbl.get(key);

 if (f==null || f.q.isEmpty()) {

 return null;

 }

 return f.q.get();

 } finally {

 if (f!=null &&

 f.q.isEmpty() &&

 f.numWaiting==0)

 tbl.remove(key);

 leave();

 }

 }

Monitors.fm Page 101 Thursday, July 13, 2000 9:39 PM

102 High-Performance Java Platform Computing

counts the number of times the thread that currently owns the monitor has entered it minus
the number of times it has left. Upon leaving the monitor, if monitorEntryCount
becomes zero, the monitor is unlocked.

Monitor Entry and Exit

Method enter() checks to see if the current thread already owns the monitor. If so, it
merely increments the monitorEntryCount. If not, it must seize the monitor by

Example 4–6 Structure of class Monitor.

public class Monitor{
 Semaphore monitorEntry=new Semaphore(1);
 volatile Thread current=null;
 volatile int monitorEntryCount=0;
 public class Condition implements MonitorCondition {

volatile int waiting=0;
Semaphore waitCond=new Semaphore(0);

 public void await()
 throws InterruptedException, MonitorException {...}
 public void signal()
 throws MonitorException {...}
 public void leaveWithSignal()
 throws MonitorException {...}
 }
 public void enter() {...}
 public void leave() throws MonitorException {...}
private class Lock implements MonitorLock{
 int n = monitorEntryCount;
 Thread owner = current;
 public void reacquire() throws

MonitorException {...}
}
 public MonitorLock release() throws MonitorException {...}
}

Monitor fields

java.lang.Thread current; The current thread.

Semaphore monitorEntry; Semaphore to lock the Monitor

int monitorEntryCount; The number of times the monitor’s current owner
has entered it minus the number of times it has exited it.

Monitors.fm Page 102 Thursday, July 13, 2000 9:39 PM

4 • Monitors 103

downing the monitorEntry semaphore. Once it owns the monitor, it assigns itself (a
reference to its Thread object) to the current field and places an initial count of unity
in the monitorEntryCount field.

However, a question concerning many of these methods is, “How should they
work with InterruptedException?” Our underlying implementation waits to
acquire the monitor by downing semaphores. The down() method can throw an
InterruptedException. If we just pass that through, we could throw
InterruptedExceptions on enter(), await(), signal(),
leaveWithSignal(), and reacquire(). Having to put in try–catch statements
around all these calls would make Monitors inconvenient to use.

We follow the lead of Java’s monitors. InterruptedException will not be thrown
upon entering or leaving a monitor, but can be thrown upon waiting for a condition to be
signalled. Thus, enter(), signal(), leaveWithSignal(), and reacquire()
should not be able to throw InterruptedException. They should, however, pre-
serve the state of the thread. If the thread was interrupted when it called the method, it
should still be interrupted when it returns.

This explains the boolean variable interrupted. This variable is set if the thread enters
the method in an interrupted state, or if it is interrupted while waiting on a semaphore
within the method. At the end of the method, the thread is again interrupted if the
interrupted flag is set.

Example 4–7 The Monitor method entry()

 public void enter() {
 if (current == Thread.currentThread())
 monitorEntryCount++;
 else {
 boolean interrupted=Thread.interrupted();
 for(;;) try {
 monitorEntry.down(); break;
 } catch (InterruptedException ie) {
 interrupted=true;
 }
 current = Thread.currentThread();
 monitorEntryCount=1;
 if (interrupted) current.interrupt();
 }
 }

Monitors.fm Page 103 Thursday, July 13, 2000 9:39 PM

104 High-Performance Java Platform Computing

Thus, we have the following code:
 for(;;) try {
 monitorEntry.down(); break;
 } catch (InterruptedException ie) {
 interrupted=true;
 }

The infinite loop will keep catching interrupts while the thread is trying to enter the moni-
tor. When there is an interrupt, the interrupted flag is set to allow the thread to be inter-
rupted again when it leaves the method. If the method successfully downs the
monitorEntry semaphore, it breaks out of the loop.

Method leave() first checks that the thread that called it actually owns the monitor. If
the thread doesn’t own the monitor, it throws an exception. If it does own the monitor, it
decrements monitorEntryCount. If the count is still greater than zero, this thread still
owns the monitor. If the count goes to zero, the monitor is free, so leave() sets the cur-
rent reference to null and ups the monitorEntry semaphore to allow some other thread
to seize the monitor.

Method release() allows a thread to temporarily give up all locks the thread
has on a monitor. First, it checks that the thread executing it owns the monitor.
If the thread does not own the monitor, release() throws an exception. If it does own
the monitor, release() creates a Monitor.Lock object to return. The initialization
for the Lock object grabs copies of the Monitor objects fields current and
monitorEntryCount. Then, release() releases the monitor.

Example 4–8 The Monitor method leave()

 public void leave() throws MonitorException{
 if (current!=Thread.currentThread())
 throw new MonitorException("leave()");
 monitorEntryCount--;
 if(monitorEntryCount==0) {
 current = null;
 monitorEntry.up();
 }
 }

Monitors.fm Page 104 Thursday, July 13, 2000 9:39 PM

4 • Monitors 105

Monitor.Condition

The local class Condition within Monitor implements interface
MonitorCondition. It is used to represent conditions (also known as events) in the
Brinch-Hansen and Hoare monitors.

Condition has two fields. The waitCond field is a semaphore used to delay threads
that are waiting on the condition. The waiting field is a count of the number of threads
waiting on the semaphore. This count is important, as semaphores maintain the count of
the number of up operations performed, whereas conditon variables are memoryless. As
we will see in signal(), a signal operation can only be translated into upping the sema-
phore if there are threads waiting.

In the code for the methods in Condition, fields current, monitorEntry, and
monitorEntryCount are fields of the surrounding Monitor object.

Method await() first checks that the executing thread owns the surrounding monitor. If
the thread does not own the monitor, it throws an exception. If it does own the monitor, it
releases the monitor and waits as follows:

• It saves the monitorEntryCount in the local variable count so it can restore it
later.

• It marks the monitor as free by setting current to null and
monitorEntryCount to zero.

Example 4–9 The Monitor method release()

 public MonitorLock release() throws MonitorException {
 if (current!=Thread.currentThread())
 throw new MonitorException("release()");
 Lock L=new Lock();
 current = null;
 monitorEntryCount=0;
 monitorEntry.up();
 return L;
 }

Monitor.Condition fields

Semaphore waitCond; The semaphore upon which the waiting threads wait.

int waiting; The number of threads waiting on this condition.

Monitors.fm Page 105 Thursday, July 13, 2000 9:39 PM

106 High-Performance Java Platform Computing

• It increments the waiting field of the condition.

• It ups the monitorEntry semaphore to allow another thread to enter the monitor.

• It waits on the Condition’s waitCond semaphore.

• Once it’s been awakened, it restores its own reference to current and the proper
count to monitorEntryCount.

Notice that await() increments the waiting field before waiting on the waitCond
semaphore, but does not decrement it after being awakened. Methods signal() and
leaveWithSignal() handle that. They decrement the count, because, as soon as they
up the semaphore, they awaken the thread, even if it hasn’t started running yet.

Decrementing the waiting count in signal() would be especially important if we were
implementing Javalike monitors, where the currently executing thread continues running
inside the monitor or another thread can seize the monitor before the awakened thread gets
to run. Here’s what could happen: Thread X is the only thread awaiting a condition. The
condition count is one. Thread Y signals the condition, so X is made runnable. But if Y
doesn’t decrement the count, the count will stay one. Now, thread Y leaves the monitor,
and thread Z seizes it. Z signals the same condition, and since the count is one, it ups the
semaphore again. Since there is no waiting thead, the semaphore remembers the up in its
internal counter. Z leaves, and X runs. But the next thread, W, that tries to await the condi-
tion will not wait at all, because the semaphore’s counter was greater than zero.

Decrementing waiting in signal() is not as important here, because the monitor is
handed off from one thread to another, and thus the monitor remains locked, the awakened

Example 4–10 The Monitor.Condition method await()

 public void await()
 throws InterruptedException, MonitorException {
 if (current!=Thread.currentThread())
 throw new MonitorException("await()");
 int count = monitorEntryCount;
 monitorEntryCount = 0;
 current = null;
 waiting++;
 monitorEntry.up();
 waitCond.down();
 current=Thread.currentThread();
 monitorEntryCount=count;
 }

Monitors.fm Page 106 Thursday, July 13, 2000 9:39 PM

4 • Monitors 107

thread begins running in it, and the thread that called signal() queues up on the
monitorEntry semaphore to reenter the monitor.

Method signal() begins with the usual check that the thread executing it actually owns
the monitor, throwing an exception if it doesn’t.

If the waiting count is zero, signal performs no operation. Otherwise, it must hand off
the monitor to one of the threads waiting for the condition. It does this as follows:

• It decrements the condition’s waiting count, for the reasons just explained.

• It saves its monitorEntryCount to restore later.

• It clears fields current and monitorEntryCount to denote that it has no own-
ership of the Monitor. This is actually unnecessary.

• It wakes up one waiting thread by upping waitCond.

• It waits to enter the monitor again by downing monitorEntry. Here, in a way
described by enter(), it preserves but ignores the fact of the thread being inter-
rupted.

Example 4–11 The Monitor.Condition method signal()

 public void signal()
 throws MonitorException {
 if (current!=Thread.currentThread())
 throw new MonitorException("signal()");
 if (waiting>0) {
 waiting--;
 int count = monitorEntryCount;
 monitorEntryCount = 0;
 current = null;
 waitCond.up();
 boolean interrupted=Thread.interrupted();
 for(;;) try {
 monitorEntry.down(); break;
 } catch (InterruptedException ie) {
 interrupted=true;
 }
 current=Thread.currentThread();
 monitorEntryCount=count;
 if (interrupted) current.interrupt();
 }
 }

Monitors.fm Page 107 Thursday, July 13, 2000 9:39 PM

108 High-Performance Java Platform Computing

• Once it gets past monitorEntry, it reestablishes fields current and
monitorEntryCount to denote that it owns the monitor again.

Method leaveWithSignal() begins simply enough with checking that the current
thread owns the monitor and then decrementing its monitorEntryCount. Then, alas,
there are four cases to consider:

Example 4–12 The Monitor.Condition method leaveWithSignal()

 public void leaveWithSignal()
 throws MonitorException {
 if (current!=Thread.currentThread())
 throw new MonitorException("leaveWithSignal()");
 monitorEntryCount--;
 if (waiting>0) {
 waiting--;
 if (monitorEntryCount>0) {
 int count = monitorEntryCount;
 monitorEntryCount = 0;
 current = null;
 waitCond.up();
 boolean interrupted=
 Thread.interrupted();
 for(;;) try {
 monitorEntry.down(); break;
 } catch (InterruptedException ie) {
 interrupted=true;
 }
 monitorEntryCount = count;
 current=Thread.currentThread();
 if (interrupted) current.interrupt();
 } else {
 current = null;
 waitCond.up();
 }
 } else {
 if (monitorEntryCount==0) {
 current = null;
 monitorEntry.up();
 }
 }
 }
 }

Monitors.fm Page 108 Thursday, July 13, 2000 9:39 PM

4 • Monitors 109

1. There is a thread waiting at the condition, and monitorEntryCount is not zero.
The leaveWithSignal() must behave like a signal(), since the current
thread must continue executing in the monitor after the awakened thread has had its
chance. This code was explained for method signal().

2. There is a thread waiting at the condition, and monitorEntryCount is zero. The
current thread can hand off the monitor and continue executing. This only requires
three things:

a. decrementing the Condition’s waiting count,

b. setting current to null so the current thread can’t try to enter the monitor
again and think it already owns it, and

c. upping the Condition’s waitCond semaphore to wake up one waiting
thread.

3. There are no threads waiting at the condition, and monitorEntryCount is zero.
The current thread must leave the monitor. This code was explained in the method
leave()from class Monitor.

4. There are no threads waiting at the condition and monitorEntryCount is not
zero. The current thread goes on executing in the monitor. This doesn’t require any
code.

Monitor.Lock

Lock is a class defined in Monitor. You cannot create an instance of it directly, but only
by calling Monitor's release() method.

Method release() will give up your lock on the monitor, but will save enough infor-
mation in the Monitor.Lock object it retuns to allow you to reacquire the monitor. It
must remember the following:

1. Who you are, so somebody else cannot reacquire the monitor pretending to be you,
and

2. How many times you have entered the monitor so that it can reestablish the proper
number of locks.

There is only one method for a MonitorLock. Calling reacquire() will relock the
monitor for you. If a different thread tries to reacquire the monitor, reacquire() will

Monitor.Lock fields
 int n = monitorEntryCount;
 Thread owner = current;

Monitors.fm Page 109 Thursday, July 13, 2000 9:39 PM

110 High-Performance Java Platform Computing

throw a MonitorException. Since Monitor.Lock class is declared within
Monitor, reacquire() can access the fields of the surrounding Monitor object
directly. Here’s what it does:

• It checks that the monitor is being reacquired by the same thread that released it.

• It locks the monitor by downing the monitorEntry semaphore. Again, the
interrupted flag is used to preserve the fact that the thread has been interrupted
while ignoring it in this method.

• It records that it is the current owner of the monitor.

• It reestablishes the monitor entry count.

• It clears the owner of the Monitor.Lock object so that it cannot be used again to
enter the monitor.

The Multiple Reader–Writer Monitors
Threads that share data structures can run into problems if one of the threads is writing
into the structure while another thread is reading from it or if two threads try to write into
it at the same time. This is because several values must typically be stored to move the
data structure from one consistent state to another. If only some of the stores have been
made when it is read, the reader will get confused. If more than one thread is writing into

Example 4–13 The Monitor.Lock method reacquire()

 public void reacquire() throws
 MonitorException {
 if (owner != Thread.currentThread())
 throw new MonitorException(
 "attempt to reacquire Monitor"+
 " by a different thread");
 boolean interrupted=Thread.interrupted();
 for(;;) try {
 monitorEntry.down(); break;
 } catch (InterruptedException ie) {
 interrupted=true;
 }
 current = owner;
 monitorEntryCount=n;
 owner = null;
 if (interrupted) current.interrupt();
 }

Monitors.fm Page 110 Thursday, July 13, 2000 9:39 PM

4 • Monitors 111

it, some of the fields may end up changed by one of the threads and other fields changed
by the other. Thereafter, anything reading from it will be confused.

The easiest solution is to lock the data structure whenever accessing it. Any other thread
trying to access the structure will have to wait until it is unlocked before being able to lock
the structure itself.

The problem with locking the data structure is that although it is essential to prevent any
thread from writing to the data structure while another thread is writing to or reading from
it, there is no reason to prevent several threads from simultaneously reading. If many
threads are permitted to read at the same time, we would expect better performance.

Policies

We present five policies for synchronizing threads trying to read from or write to a shared
data structure:

1. The single reader–writer monitor locks the data structure so that only one thread
can access the data structure at a time, whether the thread is a reader or a writer. It is
equivalent to a semaphore.

2. The writers-preferred monitor gives the shared structure to a waiting writer (if
there is one) and only if there is no writer waiting will it be given to readers. All
waiting readers will be allowed to access the structure at the same time.

3. The readers-preferred monitor gives the shared structure to all waiting readers (if
there are any) and gives it to a writer only if there is no reader waiting.

4. The alternating readers–writers monitor gives the shared structure to a waiting
writer when readers have finished with it and to readers when a writer has finished
with it.

5. The take-a-number monitor gives the shared resource to the threads in order of
arrival. It requires a kind of busy waiting. The threads must check to see whether the
number they’ve taken is now being served.

The queued reader–writer monitor, presented later in Chapter 8, “Shared Tables of
Queues,” gives the shared resource to the threads in order of arrival. It uses a
FutureQueue from the thread package to give the resource to the threads in a first-
come, first-served order. Unlike the take-a-number monitor, which also gives the shared

These algorithms are animated in: http://www.toolsofcomputing.com.

Monitors.fm Page 111 Thursday, July 13, 2000 9:39 PM

112 High-Performance Java Platform Computing

resource to the threads in order of arrival, the queued reader–writer monitor doesn’t
require busy waiting.

The writers-preferred, readers-preferred, and alternating reader–writer monitors all have
complexities in design that are discussed in their individual sections.

Entering and Leaving the Critical Sections

Readers and writers must explicitly lock and unlock the shared resource. The locking is
done via method calls to a monitor object that implements the desired policy, as in the fol-
lowing:

Reader
 monitor.startReading();
 try {
 ...read...
 } finally {monitor.stopReading();}

Writer
 monitor.startWriting();
 try {
 ...write...
 } finally {monitor.stopWriting();}

The reason for the try...finally statements is that the thread could throw an excep-
tion within the code to read or write. It is important to unlock shared resources upon
abnormal exit.

The Single-Reader–Writer Monitor

This demonstration shows a simple lock on the data structure. Only a single reader or
writer can access the shared resource at one time.

With a fair scheduling algorithm, each thread, in turn, should get a chance to run, cycling
through the threads over and over. We’ve tried this out on a number of Java implementa-
tions. They are not fair. A small subset of the threads run while all the others wait.

The Single-Reader–Writer Monitor is equivalent to a lock or binary semaphore. Methods
startReading() and startWriting() are identical, as are stopReading()
and stopWriting().

Monitors.fm Page 112 Thursday, July 13, 2000 9:39 PM

4 • Monitors 113

The Readers-Preferred Monitor

The Readers-Preferred Monitor gives the resource to a reader (if there are any available).
Only if there are no readers present will the resource be given to a writer.

Example 4–14 Class SingleReaderWriter

class SingleReaderWriter extends
 MultipleReadersWritersMonitor{
int n=0; /* number readers reading and writers writing,
 0 or 1*/
public void reset(){
 n=0;
}
public synchronized void startReading()
 throws InterruptedException{
 while (n!=0) wait();
 n=1;
}
public synchronized void stopReading(){
 n=0;
 notify();
}
public synchronized void startWriting()
 throws InterruptedException{
 while (n!=0) wait();
 n=1;
}
public synchronized void stopWriting(){
 n=0;
 notify();
}
public String getMonitorInfo(){
 return "Single Reader Writer Monitor";
}
}

If you run this animation with threads choosing randomly whether to read
or write, you will notice that most threads end up waiting to write for a long
time. If you run it with a fixed number of readers, you will observe the ani-
mation alternately giving the resource to a batch of readers and then to a
writer while the readers are inactive.

Monitors.fm Page 113 Thursday, July 13, 2000 9:39 PM

114 High-Performance Java Platform Computing

State of the monitor. The state of the readers-preferred monitor is contained in four
variables:

nr: The number of threads currently reading nr > = 0.

nw: The number of threads currently writing (zero or one).

nrtotal: The number of threads either reading or waiting to read
nrtotal > = nr.

nwtotal: The number of threads either writing or waiting to write.

startReading(). If a thread tries to start reading, it must wait until there are no
threads currently writing; in other words, it must wait until nw is zero.

startWriting(). To start writing, a thread must wait until there are no other
threads reading, waiting to read, or writing (i.e., nrtotal = nw = zero).

Example 4–15 The ReadersPreferredMonitor method startReading()

 public synchronized void startReading()
 throws InterruptedException{
 nrtotal++;
 while (nw!=0) wait();
 nr++;
 }

Example 4–16 The ReadersPreferredMonitor method startWriting()

 public synchronized void startWriting()
 throws InterruptedException{
 nwtotal++;
 while (nrtotal+nw != 0) wait();
 nw=1;
 }

Example 4–17 The ReadersPreferredMonitor method stopReading()

 public synchronized void stopReading(){
 nr--; nrtotal--;
 if (nrtotal==0) notify();
 }

Monitors.fm Page 114 Thursday, July 13, 2000 9:39 PM

4 • Monitors 115

stopReading(). When the last present reader finishes reading, it wakes up a
waiting writer (if there are any present), which will seize the monitor and start writing.

stopWriting(). When a writer finishes writing, it wakes up all waiting readers
and writers to let them compete for the monitor.

The Writers-Preferred Monitor

A Writers-Preferred Monitor gives the resource to a writer if any is waiting. Only if there
is no writer available will it be given to readers.

State of the monitor. The state of the monitor is contained in four variables:

 nr: The number of threads currently reading.

nw: The number of threads currently writing (zero or one).

nrtotal: The number of threads either reading or waiting to read.
 (nrtotal ≥ nr).

nwtotal: The number of threads either writing or waiting to write.

startReading(). If a thread tries to start reading, it must wait until there are no
threads either writing or waiting to write; in other words, it must wait until nwtotal is
zero.

startWriting(). To start writing, a thread must wait until there are no other
threads reading or writing, indicated by nr and nw both equaling zero.

Example 4–18 The ReadersPreferredMonitor method startWriting()

 public synchronized void stopWriting(){
 nw=0; nwtotal--;
 notifyAll();
 }

If you run this animation with threads choosing randomly whether to read
or write, you will observe that more and more threads accumulate waiting
to read until there are no writers left. Then, all the waiting readers will run.

If you run it with a fixed set of readers, a batch of readers may run before
the first writer enters the monitor, but thereafter, typically, all the writers
will run to completion before any readers run again. (You can set the num-
ber of readers and rest time to give the readers a better chance.)

Monitors.fm Page 115 Thursday, July 13, 2000 9:39 PM

116 High-Performance Java Platform Computing

stopReading(). When the last reader of a group finishes reading, it wakes up all
waiting readers and writers. If there are any waiting writers, no reader will be able to start
reading, but will wait again. Eventually, a writer will seize the monitor and start writing.

stopWriting(). When a writer finishes writing, it wakes up all waiting readers
and writers to let them compete for the monitor.

Example 4–19 The WritersPreferredMonitor method startReading

 public synchronized void startReading()
 throws InterruptedException{
 nrtotal++;
 while (nwtotal!=0) wait();
 nr++;
 }

Example 4–20 The WritersPreferredMonitor method startWriting

 public synchronized void startWriting()
 throws InterruptedException{
 nwtotal++;
 while (nr+nw != 0) wait();
 nw=1;
 }

Example 4–21 The WritersPreferredMonitor method stopReading()

 public synchronized void stopReading(){
 nr--; nrtotal--;
 if (nr==0) notifyAll();
 }

Example 4–22 The WritersPreferredMonitor method stopWriting()

 public synchronized void stopWriting(){
 nw=0; nwtotal--;
 notifyAll();
 }

Monitors.fm Page 116 Thursday, July 13, 2000 9:39 PM

4 • Monitors 117

The Alternating Readers–Writers Monitor

The idea of the Alternating Readers–Writers Monitor is that readers and writers should
take turns. Trying to specify this a bit more carefully, we come up with the following ele-
ments:

• General alternation. A batch of readers run, followed by a single writer, followed by
another batch of readers, etc.

• Immediate access. If a reader arrives and there are no writers present, it is given
access to the resource immediately. If a writer arrives and neither readers nor writers
own the resource, it is allocated the resource immediately.

State of the monitor. The state of an Alternating Readers–Writers Monitor is con-
tained in four variables:

nr[2]: The number of threads currently reading.

thisBatch: Index in nr of the batch of readers currently reading (zero or one).

nextBatch: Index in nr of the batch of readers waiting to read (always
1-thisBatch).

nw: The number of threads currently writing (zero or one).

nwtotal: The number of threads either writing or waiting to write.

startReading(). When a thread tries to start reading, it checks first to see if
there are any writers present. If there are none, it starts reading immediately, recording its
presence in nr[thisBatch].

If there are writers present, it must wait until one writer has run, so it adds itself to the
number of readers in the next batch by incrementing nr[nextBatch]. It saves the value
of nextBatch in the variable myBatch and waits until thisBatch equals myBatch,
which will indicate that a writer has finished running.

Example 4–23 The AlternatingReadersWritersMonitor method
startReading()

 public synchronized void startReading()
 throws InterruptedException{
 if (nwtotal==0) nr[thisBatch]++;
 else {
 nr[nextBatch]++;
 int myBatch=nextBatch;
 while (thisBatch!=myBatch) wait();
 }
 }

Monitors.fm Page 117 Thursday, July 13, 2000 9:39 PM

118 High-Performance Java Platform Computing

stopReading(). When a thread stops reading, it subtracts itself from
nr[thisBatch]. It then notifies all waiting threads to try accessing the resources.
Readers will wait again, since thisBatch has not been set to the value they are waiting
for, but one of the writers will be able to start writing.

startWriting(). When a writer attempts to start writing, it adds itself to the
total number of writers present. Then, it waits until no threads are reading or writing. Once
that condition is true, it sets nw to one to indicate that it is writing and begins writing.

stopWriting(). When a thread stops writing, it sets nw back to zero to indicate
that no thread is writing, and it subtracts itself from the total number of writers present. It

Example 4–24 The AlternatingReadersWritersMonitor method stopReading()

 public synchronized void stopReading(){
 nr[thisBatch]--;
 if (nr[thisBatch]==0) {
 notifyAll();
 }
 }

Example 4–25 The AlternatingReadersWritersMonitor method
startWriting()

 public synchronized void startWriting()
 throws InterruptedException{
 nwtotal++;
 while (nr[thisBatch]+nw != 0) wait();
 nw=1;
 }

Example 4–26 The AlternatingReadersWritersMonitor method stopWriting()

 public synchronized void stopWriting(){
 nw=0; nwtotal--;
 int tmp=thisBatch;
 thisBatch=nextBatch;
 nextBatch=tmp;
 notifyAll();
 }

Monitors.fm Page 118 Thursday, July 13, 2000 9:39 PM

4 • Monitors 119

then swaps the values of thisBatch and nextBatch to release the next batch of read-
ers, and it notifies all waiting threads, which wakes up the readers.

The Take-a-Number Monitor

As each reader or writer arrives, it takes the next number, and threads are served in order
by their number. However, all readers with consecutive numbers are served at the same
time.

State of the monitor. The state of this monitor is contained in three variables:

nr: The number of threads currently reading.

nextNumber: The number to be taken by the next thread to arrive.

nowServing: The number of the thread to be served next.

startReading(). If a thread tries to start reading, it takes a number and waits
until its number comes up. Then, it increments the number of readers and the number cur-
rently being served. By incrementing nowServing, a reader allows the reader with the
next sequential number to start. If the thread with the next number is a writer, it will wait
until the readers are done before starting.

Example 4–27 The TakeANumberMonitor method startReading()

 public synchronized void startReading()
 throws InterruptedException{
 int myNumber = nextNumber++;
 while (nowServing!=myNumber) wait();
 nr++;
 nowServing++;
 notifyAll();
 }

Example 4–28 The TakeANumberMonitor method startWriting()

 public synchronized void startWriting()
 throws InterruptedException{
 int myNumber = nextNumber++;
 while (nowServing!=myNumber) wait();
 while(nr>0) wait();
 }

Monitors.fm Page 119 Thursday, July 13, 2000 9:39 PM

120 High-Performance Java Platform Computing

startWriting(). To start writing, a thread takes a number, waits until its
number comes up, and then waits until any preceding readers are finished. It will not
increment nowServing until it is finished writing, since no subsequent thread should
run until this writer is done.

stopReading(). When the last present reader finishes reading, it wakes up a
waiting writer (if there is one present). Unfortunately, it has to wake up all threads just for
one of them to start writing.

stopWriting(). When a writer finishes writing, it increments nowServing
and wakes up all waiting readers and writers to let them see if they are next.

Chapter Wrap-up
We discussed what monitors are supposed to be and observed that Java’s synchronized
methods provide degenerate forms of monitors. We then studied the thread package’s
Monitor class, which provides more of the facilities of monitors, but without any of the
syntactic support. The implementation of Monitor and related classes shows sophisti-
cated uses of semaphores.

We then considered multiple reader–writer monitors, which provide shared access to
resources for readers, but mutual exclusion for writers. The different implementations pro-
vide different scheduling policies. The readers-preferred monitor gives readers priority
over writers. The writers-preferred monitors do exactly the opposite. The alternating read-
ers–writers monitor alternates between giving access to a single writer and a batch of read-
ers. The take-a-number monitor gives access to threads in first-come, first-served order
while alternating between single writers and batches of readers. A tricky problem in

Example 4–29 The TakeANumberMonitor method stopReading()

 public synchronized void stopReading(){
 nr--;
 if (nr==0) notifyAll();
 }

Example 4–30 The TakeANumberMonitor method stopWriting()

 public synchronized void stopWriting(){
 nowServing++;
 notifyAll();
 }

Monitors.fm Page 120 Thursday, July 13, 2000 9:39 PM

4 • Monitors 121

implementing these monitors is properly allocating a monitor to a newly arriving thread
when no thread is currently using it and no threads are queued for it when the new thread
arrives.

Exercises
1. The language Python provides lock objects similar to binary semaphores (i.e., sema-
phores for which the count is either zero or one). Here are the facilities of a Java version of
Python locks:

The constructor

Lock L=new Lock();

creates a Lock object, which is initially unlocked. The method

 L.acquire();

which locks the Lock object (similarly to down() for a semaphore). It blocks the
thread’s execution until the Lock object is available. The call

 boolean a=L.acquire(false);

will immediately return, saying whether it acquired the lock. It assigns true to a if the
lock was acquired. If the lock wasn’t acquired, it assigns false. The call
L.acquire(true) is equivalent to L.acquire(). The method

 L.release();

releases a lock, allowing another thread to acquire it. A blocked thread waiting for the lock
is given the chance to acquire it.

If a thread tries to lock the same Lock object more than once, it is deadlocked with itself.

Implement Lock objects in Java that provide the facilities of Python locks.

2. Python provides reentrant locks similar to the monitors in Java that allow the same
thread to synchronize more than once on the same object. For that matter, they are like the
monitors described in this chapter, which allow a thread to enter the same monitor more
than once before leaving it. The Java version is as follows:

The constructor call

RLock L=new RLock();

creates a reentrant lock. The operations on an RLock object are the same as on a Lock
object, except that a thread will not block itself if it tries to acquire the same lock more
than once before releasing it. The RLock object is not released for other threads until the
thread that owns it has released it as many times as it has acquired it.

Implement RLock objects in Java that provide the facilities of Python RLocks.

Monitors.fm Page 121 Thursday, July 13, 2000 9:39 PM

122 High-Performance Java Platform Computing

3. The language Python provides Condition objects similar to the
Monitor.Condition objects in the thread package. The following is a Java syntax for
them:

The constructor call

Condition C=new Condition(L);

creates a Condition object that uses underlying Lock or RLock object L. If L is omit-
ted, as in

Condition C=new Condition();

a new RLock object is created for the Condition. The call

 C.acquire();

locks the underlying Lock object. It blocks until the lock object is available. Call

 boolean a=C.acquire(false);

will return immediately, saying whether it acquired the lock or not. It assigns true to a if
the lock was acquired. If the lock wasn’t acquired, it assigns false. The call
C.acquire(true) is equivalent to C.acquire(), and

C.release();

releases the underlying lock. The method

C.wait();

must only be called by the thread that has acquired the lock. It releases the lock and waits
until some other thread calls C.notify() or C.notifyAll(). The method

C.wait(timeout);

will wait until awakened by notify() or notifyAll() or until timeout seconds
have elapsed. The parameter timeout is a floating-point number, so fractions of a sec-
ond may be specified. Calling

C.notify();

will awaken at most one thread waiting on a Condition. If no threads are waiting,
notify() performs no operation. Method notify() may only be called by the thread
that has acquired the condition’s lock. As in Java, a thread being awakened must reacquire
the lock before returning from wait(). The thread executing the notify() does not
simultaneously release the lock, so the awakened thread will be delayed. Other threads
may acquire the lock before the waiting thread does. The method

C.notifyAll();

will awaken all waiting threads. The same caveats apply to it as for notify().

Implement a Condition class whose objects behave in the fashion just described.

Monitors.fm Page 122 Thursday, July 13, 2000 9:39 PM

