
Introduction to
Kubernetes

Antonio Gámez Díaz, PhD (he/him/his)
Ibone González Mauraza (she/her/hers)

Software Engineers @ SUSE

November 27th, 2025

Disclaimer: this material is NOT part of the official SUSE training offering, this is just part of an employee-led initiative. For official or certification-led training, please always refer to suse.com/training.

1

https://www.suse.com/training/course/

● Antonio Gámez Díaz, PhD
○ Sr. Software Engineer @ SUSE
○ antonio.gamez@suse.com

➔ Bringing the power of Kubernetes
to SAP solutions in SUSE since
2024. Now focusing on AI
solutions.

➔ PhD in Software Engineering by
the Universidad de Sevilla.

➔ Loves APIs and SLAs.
2

Speakers
Who is who

mailto:antonio.gamez@suse.com

● Ibone González Mauraza
○ Software Engineer @ SUSE
○ ibone.gonzalez@suse.com

➔ Full-stack engineer at the SUSE
Customer Center team since
2024.

➔ CKAD-certified by the CNCF.

➔ Passionate about Kubernetes and
lettering.

3

Speakers
Who is who

mailto:ibone.gonzalez@suse.com

Stay tuned for the Kahoot

4

We might have some prizes for you :)

● At the end of the session we will provide a Kahoot PIN
○ Join using the Kahoot app or kahoot.it

https://kahoot.it

1. Introduction to Kubernetes.

2. Kubectl and the K8s API.

3. Deploying apps on K8s: Pods and Deployments.

4. Accessing to our apps: Services.

6

Agenda
For today’s session

7

1.
Introduction
to Kubernetes

κυβερνήτης (kyvernítis)
m (plural κυβερνήτες)

1.governor (leader of a region or state)
2.(nautical) captain, skipper
3.pilot (of an aircraft)

8

κυβερνήτης
kube...what?

Picture from karenswhimsy.com/ancient-greek-ships

https://en.wiktionary.org/w/index.php?title=%CE%BA%CF%85%CE%B2%CE%B5%CF%81%CE%BD%CE%AE%CF%84%CE%B5%CF%82&action=edit&redlink=1
https://en.wiktionary.org/wiki/governor
https://en.wiktionary.org/wiki/nautical
https://en.wiktionary.org/wiki/captain
https://en.wiktionary.org/wiki/skipper
https://en.wiktionary.org/wiki/pilot
https://karenswhimsy.com/ancient-greek-ships

9

Picture from cloud.google.com/kubernetes-engine/kubernetes-comic

Introduction
Why do I need Kubernetes?

https://cloud.google.com/kubernetes-engine/kubernetes-comic

10

Introduction
What is Kubernetes

• Kubernetes is an open-source software for automating deployment, scaling, and management
of containerized applications.

• Provides a powerful API to manage distributed applications.
• Built on 15 years of experience at Google.
• Apache Software License.
• Now governed by the CNCF (Cloud Native Computing Foundation) at the Linux Foundation.

○ landscape.cncf.io

• Several Special Interest Groups (SIG).

• Open to everyone.

• Weekly hangouts.

https://kubernetes.io/
https://www.cncf.io/
https://landscape.cncf.io

11

Introduction
The Kubernetes project

Data extracted on Nov’25

● Open-sourced in June 2014 (11+ years old).

● +3.9K contributors.

● ~134K commits.

● Google and other companies are lead contributors
○ Check contributions by company.

○ SUSE has ~150 commits in the project

● +218K people on Slack (kubernetes.slack.com).

● 1 major release every 3 months (currently 1.34).

https://github.com/kubernetes/kubernetes/graphs/contributors
https://github.com/kubernetes/kubernetes/commits/master/
https://www.stackalytics.io/cncf?project_type=kubernetes
https://kubernetes.slack.com/
https://endoflife.date/kubernetes

12

Introduction
The Kubernetes project

1979
Unix V7 introduces

chroot

1982
chroot added to

BSD

2000
FreeBSD Jails

released

2001
Linux VServer

released
2003

Google creates Borg

2004
Solaris Containers

on Zones

2006
Linux cpusets +
chroot = "Linux

Containers"

2007
Google launches

Process Containers
aka "cgroups"

2008
Linux kernel 2.6.24

adds "cgroups"

2008
LXC - Linux

Containers released

13

Introduction
The Kubernetes project 2013

Docker
open-sourced by

Dotcloud

2013
Internal proposals
in Google began

2014
Google open

sources
container-agent

2014
first commits to

Kubernetes inside
Google

2014
First Kubernetes

open-source
commit

2014
Google announces

Kubernetes at
DockerCon

2014
Microsoft, RedHat,

IBM, Docker, CoreOS
join the Kubernetes

community

2014
Google's GKE

becomes the first
managed

Kubernetes service

2015
First Kubernetes
training course

2015
Kubernetes enables
use of the Container
Network Interface

(CNI)

2016
addition of the

Container Runtime
Interface (CRI)

2018
Kubernetes is first

project to graduate
from CNCF
incubation

2022
Kubernetes 8th year

open-source
birthday

and more…

14

Introduction
Used in several projects

All product names, logos, and brands are property of their respective owners.

15

Introduction
Should I learn Kubernetes?

jobs.suse.com
Data extracted on Nov’25

https://jobs.suse.com

16

Introduction
Origin of K8s: Borg

● Borg was a Google secret for a long time.

● Orchestration system to manage all Google
applications at scale.

● Finally described publicly in 2015.

● Paper explaining ideas behind Kubernetes.

https://research.google/pubs/pub43438/

17

Introduction
Kubernetes lineage

landscape.cncf.io

https://landscape.cncf.io

18

Introduction
Architectural overview

Picture from Introduction to Kubernetes

https://docs.google.com/presentation/d/1zrfVlE5r61ZNQrmXKx5gJmBcXnoa_WerHEnTxu5SMco

• kube-apiserver:
○ It is where the cluster is administered, it

implements a REST API (kubectl talks to
this API).

• etcd:
○ Lightweight and distributed key-value

storage.

• kube-controller-manager:
○ Monitors the cluster state and steers the

cluster towards the desired state.

• kube-scheduler:
○ Assigns workloads to each node,

selecting the best one.

19

Introduction
Inside a control plane

Picture from Introduction to Kubernetes

https://docs.google.com/presentation/d/1zrfVlE5r61ZNQrmXKx5gJmBcXnoa_WerHEnTxu5SMco

• kubelet:

○ Interacts with the control plane and
etcd and receives workloads.

• kube-proxy:

○ Forward the workloads to the
container.

● Container Runtime Engine:

○ It is the container runtime, such as
Containerd (~Docker), Rkt, CRI-o, Kata,
Virtlet, etc...

20

Introduction
Inside a node

Picture from Introduction to Kubernetes

https://docs.google.com/presentation/d/1zrfVlE5r61ZNQrmXKx5gJmBcXnoa_WerHEnTxu5SMco

21

Introduction
A tour of web resources

● Kubernetes Documentation.

● Cloud Native Computing Foundation.

● Kubernetes · GitHub.

● Rancher Academy.

https://kubernetes.io/docs/home/
https://www.cncf.io/
https://github.com/kubernetes
https://www.rancher.academy/
https://www.rancher.academy/

22

2.
Kubectl and
the K8s API

apiVersion: v1
kind: Pod

metadata
 name: pod-example
 namespace: default
 uid: ...
...

Everything in k8s is an API object.

YAML files.

Format:

/apis/<group>/<version>/<resource>

Examples:

/apis/apps/v1/deployments

/apis/batch/v1beta1/cronjobs

23

kubernetes.io/docs/reference

Kubectl and the K8s API
API overview: everything is an API object

https://kubernetes.io/docs/reference

24

Kubectl and the K8s API
API overview: kubectl

kubernetes.io/docs/tasks/tools/#kubectl

● kubectl is the way to interact with the k8s API:

○ command – operation to execute.

○ type – k8s API resource.

○ name – name of the resource.

○ flags – optional arguments.

kubectl <command> <type> <name> <flags>>

https://kubernetes.io/docs/tasks/tools/#kubectl

Linux
> curl -Lo "https://dl.k8s.io/release/$(curl -L -s
https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl"
> chmod +x ./kubectl
> sudo mv ./kubectl /usr/local/bin/kubectl

MacOS
> curl -Lo "https://dl.k8s.io/release/$(curl -L -s
https://dl.k8s.io/release/stable.txt)/bin/darwin/amd64/kubectl"
> chmod +x ./kubectl
> sudo mv ./kubectl /usr/local/bin/kubectl

Find detailed instructions to install it on Linux, MacOS or Windows
on the Kubernetes documentation.

25

Kubectl and the K8s API
Install kubectl

● Install the kubectl binary:

https://kubernetes.io/docs/tasks/tools/

26

Kubectl and the K8s API
But… I need a k8s cluster!

● For learning and developing:

○ Killercoda

○ Kind

○ Minikube

○ Kubeadm

○ Microk8s

○ K3s

○ k3d

● Production-grade Kubernetes
distributions:

○ On-premise k8s (~private cloud)

■ Bare-metal deployment

■ RKE2

○ Managed-clusters on public clouds

■ GKE, EKS, AKS, …

● Managing multiple Kubernetes clusters in a
consolidated way:

○ Rancher

https://killercoda.com/playgrounds/scenario/kubernetes
https://kind.sigs.k8s.io/docs/user/quick-start/
https://minikube.sigs.k8s.io/docs/start/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm
https://microk8s.io/
https://k3s.io/
https://k3d.io
https://docs.rke2.io/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/es/eks/
https://azure.microsoft.com/en-us/products/kubernetes-service
https://www.rancher.com/
https://www.rancher.com/

Kubectl and the K8s API

● k3d is a lightweight wrapper to run a Kubernetes cluster (k3s) in a container.

○ It’s able to create single and multi node clusters.

● Prerequisite: install Docker.

○ Or any container management tool, like Podman (extra configuration required)

27

Bootstrapping a simple cluster: k3d

https://www.docker.com/get-started/
https://podman.io/
https://k3d.io/stable/usage/advanced/podman/

Kubectl and the K8s API

● Install the k3d binary and create a cluster:

28

Using k3d: installing the binary and creating a cluster

Linux
> curl -s
"https://raw.githubusercontent.com/k3d-io/k3d/main/install.sh"| bash

Create/delete a cluster
> k3d cluster create
> k3d cluster delete

Find detailed instructions to install it on Linux, MacOS or Windows
 on the k3d website.

https://k3d.io/stable/#quick-start

Kubectl and the K8s API

● If you want to use NodePort or Ingress services,

○ the k3d cluster must be created with:

29

Using k3d: installing the binary and creating a cluster (with custom config)

Exposing NodePort 30000 in the host system, port 30000
> k3d cluster create -p "30000:30000@agent:0" --agents 1

Exposing Ingress controller in the host system, port 8080
> k3d cluster create -p "8080:80@loadbalancer" --agents 1

Find detailed instructions on how to expose services on the
k3d documentation.

https://k3d.io/stable/usage/exposing_services/

● Check the Kubernetes cluster is up and running:

> kubectl cluster-info
Kubernetes control plane is running at https://0.0.0.0:65392
CoreDNS is running at
https://0.0.0.0:65392/api/v1/namespaces/kube-system/services/kube-d
ns:dns/proxy
Metrics-server is running at
https://0.0.0.0:65392/api/v1/namespaces/kube-system/services/https:
metrics-server:https/proxy

> kubectl get nodes
NAME STATUS ROLES AGE VERSION
k3d-k3s-cl-agent-0 Ready <none> 9h v1.30.4
k3d-k3s-cl-server-0 Ready control-plane,master 9h v1.30.4

30

Kubectl and the K8s API
Inspect the cluster

31

3.
Deploying
apps on K8s:
Pods and
Deployments

32

Application Deployment
A common scenario: web application (frontend) using a database (backend)

● External load balancer.

● Set of VMs running our web app.

● Internal load balancer.

● Set of databases.

Frontend Backend

● However, this is not enough, we want:

○ Zero downtime.

○ Failover mechanisms.

○ Dynamic scalability.

○ Rolling updates.

○ Automatic deployments.

○ Load Balancing.

○ Easy migration.

○ Monitoring.

○ Role-Based Access Control.

○ Continuous Integration and Delivery.

Frontend Backend

33

Application Deployment
A common scenario: web application (frontend) using a database (backend)

● With Kubernetes we get:

○ Zero downtime.

○ Failover mechanisms.

○ Dynamic scalability.

○ Rolling updates.

○ Automatic deployments.

○ Load Balancing.

○ Easy migration.

○ Monitoring.

○ Role-Based Access Control.

○ Continuous Integration and Delivery.

34

Application Deployment
A common scenario: web application (frontend) using a database (backend)

Deployment

ReplicaSet

Deployment

ReplicaSet

Frontend
SVC

Backend
SVC

Pods

Containers

Configuration
Resources

Configuration
Resources

Ingress

Pets vs Cattle

● Pets:

○ Treated as unique.

○ Typically, manually built managed and
updated.

○ Indispensable, can’t be down.

35

A different approach for your servers

● Cattle:

○ Treated as "just one more".

○ Automatically built.

○ Designed for failure.

Read more at The History of Pets vs Cattle and How to Use the Analogy Properly

http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle

● Smallest compute unit in Kubernetes.

○ Top level API object to run containers.

● Represents a group of collocated containers sharing storage resources and IP.

○ Pod’s containers get restarted if they fail.

● Pods are EPHEMERAL. Containers

Volume

36

Basic Objects: Pod
What is a Pod?

kubernetes.io/docs/concepts/workloads/pod

https://kubernetes.io/docs/concepts/workloads/pod

● K8s is supposed to manage containers, but pods are the basic building block...

○ "one process, one container" principle.

■ No more VMs with dozens of applications. Use a container per process.

■ But… I need more than one app/process cooperating to run my service:

● more than one container sharing storage and IP ensuring efficient communication
between them.

37

Basic Objects: Pod
Why pods?

kubernetes.io/docs/concepts/workloads/pod

https://kubernetes.io/docs/concepts/workloads/pod

● Pods as a new layer of abstraction:

○ A container can not only be a Docker container, but also a Rocket container or a VM managed by
Virtlet. Each solution has different requirements/specifications.

○ K8s needs additional information that a sole container doesn’t have:

■ Restart policies.

■ Readiness/Liveness probes.

38

Basic Objects: Pod
Why pods?

kubernetes.io/docs/concepts/workloads/pod

https://kubernetes.io/docs/concepts/workloads/pod

39

kubernetes.io/docs/concepts/workloads/pod

● NGINX and its PHP-FPM module.

● Wordpress and its MariaDB database.

● MongoDB primary and secondaries nodes.

Hands-on!
Question: multi-container or multiple pods?

https://kubernetes.io/docs/concepts/workloads/pod

apiVersion: v1
required field
kind: Pod
required field
metadata:
 # required field
 name: my-pod
 # required field
 namespace: default
 labels:
 app: my-pod
 ...
spec:
 # required field
 containers:
 - image: myImage:latest
 ...
status:
 hostIP: X.X.X.X
 phase: Running
 ...

metadata:
Data that helps uniquely identify the K8s object.

spec:
Different on every K8s object
Describes the characteristics of the K8s object.

> kubectl get pod my-pod

40

kubernetes.io/docs/concepts/overview/working-with-objects

Describing K8s objects
How does a K8s object look like? - Metadata and Spec

https://kubernetes.io/docs/concepts/overview/working-with-objects/

apiVersion: v1
required field
kind: Pod
required field
metadata:
 # required field
 name: my-pod
 # required field
 namespace: default
 labels:
 app: my-pod
 ...
spec:
 # required field
 containers:
 - image: myImage:latest
 ...
status:
 hostIP: X.X.X.X
 phase: Running
 ...

labels:
You can define your labels in the object specifications.

Labels are key/value pairs that are attached to objects, such
as pods.

41

Describing K8s objects
How does a K8s object look like? - Labels

kubernetes.io/docs/concepts/overview/working-with-objects/labels

> kubectl get pod my-pod

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

apiVersion: v1
kind: Pod
metadata:
 name: mongo
spec:
 containers:
 - image: mongo
 name: mongo

> kubectl create –f mongo-pod.yaml
pod/mongo created

> kubectl get pod mongo
NAME READY STATUS RESTARTS AGE
mongo 1/1 Running 0 9s

Have a look at the Pod
specification.

mongo-pod.yaml

● Create your first Pod:

42

Hands-on!
Creating a pod

kubernetes.io/docs/concepts/workloads/pod

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/
https://kubernetes.io/docs/concepts/workloads/pod

Create a new label on-the-fly
> kubectl label pods mongo my-label=my-value
pod/mongo-labels labeled

Show labels in the output
> kubectl get pods --show-labels
NAME READY STATUS RESTARTS AGE LABELS
mongo 1/1 Running 0 9m my-label=my-value

Find pods having label "my-label" equals to "my-value"
> kubectl get pods -l my-label=foo
NAME READY STATUS RESTARTS AGE
mongo 1/1 Running 0 9m

List pods with a new column showing the label value "my-label"
> kubectl get pods -L my-label
NAME READY STATUS RESTARTS AGE MY-LABEL
mongo 1/1 Running 0 9m my-value

● Why use labels?
○ For querying and

selecting resources
○ e.g., force the scheduling

of a Pod on a specific
Node (using
nodeSelector in a Pod
definition).

43

kubernetes.io/docs/concepts/overview/working-with-objects/labels

Hands-on!
Managing labels

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

44

Basic Objects: ReplicaSet
What it is?

kubernetes.io/docs/concepts/workloads/controllers/replicaset

● A ReplicaSet ensures that a specified number of pod "replicas" are running at
any one time.

○ The replication controller ensures that a pod(s) are always up and available.

● We usually don’t interact with a ReplicaSet, but with a higher-level object:
Deployments. ReplicaSet ReplicaSet ReplicaSet

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset

45

Basic Objects: Deployment
What it is?

kubernetes.io/docs/concepts/workloads/controllers/deployment

● A Deployment is a higher-level concept that manages ReplicaSets.

● It allows several management operations like:

○ Replica management.

○ Pod scaling.

○ Rolling updates.

○ Rollback to a previous version.

○ Clean-up policies.

● Extra! - StatefulSet: like a Deployment, but…

○ provides guarantees about the ordering and uniqueness of the Pods.

○ offers stable network identities (even if the pod is rescheduled) - headless service required.

○ also offers persistent storage (PVC) for each Pod.

Deployment

ReplicaSet

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Creating our first deployment: a simple web server with nginx

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginxdemos/hello

nginx-deploy.yaml

replicas:
number of desired instances of our apps.

label:
"app=nginx"

matchLabels:
We are selecting pods matching "app=nginx".

containers[]
array of containers that are part of our pod.

46

Hands-on!

kubernetes.io/docs/concepts/workloads/controllers/deployment

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginxdemos/hello

Create a new deployment
> kubectl apply -f nginx-deploy.yaml
deployment.apps/nginx

Show all the deployments
> kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 1/1 1 1 30s

What if… we want more replicas?

47

Hands-on!
Creating our first deployment: a simple web server with nginx

nginx-deploy.yaml

kubernetes.io/docs/concepts/workloads/controllers/deployment

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginxdemos/hello

Scale up our deployment
> kubectl scale deployment nginx --replicas=3
deployment.apps/nginx scaled

Show all the deployments again
> kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 3/3 3 3 30s

Now we have 3 replicas

What if… we want to change the image in all the replicas?

48

Hands-on!
Modifying the deployment replicas

nginx-deploy.yaml

kubernetes.io/docs/concepts/workloads/controllers/deployment

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#scaling-a-deployment

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.25.5

Replace the image used in the container "nginx"
> kubectl set image deployment nginx nginx=nginx:1.26.2-alpine --all
deployment.apps/nginx image updated

Describe the deployment
> kubectl describe deployment nginx
...
Pod Template:
 Labels: app=nginx
 Containers:
 nginx:
 Image: nginx: nginx:1.26.2-alpine

Get all replicasets
> kubectl get replicasets
NAME DESIRED CURRENT READY AGE
nginx-67c9d5bc66 3 3 3 30s
nginx-6c46465cc6 0 0 0 9m

The image has been
changed

A new ReplicaSet is created

49

Hands-on!
Changing the image used in our deployment

nginx-deploy.yaml

kubernetes.io/docs/concepts/workloads/controllers/deployment

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#scaling-a-deployment

Create a deployment without writing any YAML file :)
> kubectl create deployment bad-nginx --image=nginx
deployment.apps/bad-nginx created

But.. everything is a YAML
> kubectl get deployment/bad-nginx -o yaml
...

Replace the image with a non-existent one and record the changes in log
> kubectl set image deployment bad-nginx nginx=nginx:bad --all --record
deployment.apps/nginx image updated

The pod will be in "ErrImagePull" since the image does not exist
> kubectl get pods –l app=bad-nginx
NAME READY STATUS RESTARTS AGE
bad-nginx-69cbfbf986-4754v 0/1 ErrImagePull 0 9s
bad-nginx-8ff678449-vsd4l 1/1 Running 0 49s

50

Hands-on!
Rolling back a deployment

kubernetes.io/docs/concepts/workloads/controllers/deployment

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#rolling-back-a-deployment

Get the deployment rollout history
In revision 1 we created the deployment
> kubectl rollout history deployment/bad-nginx
REVISION CHANGE-CAUSE
1 <none>
2 kubectl set image deployment bad-nginx nginx=nginx:bad --all=true --record=true

Let’s undo and come back to the previous revision
> kubectl rollout undo deployment/bad-nginx
deployment.apps/bad-nginx rolled back

Get the pods again, now it is working again
> kubectl get pods
NAME READY STATUS RESTARTS AGE
bad-nginx-8ff678449-vsd4l 1/1 Running 0 6m22s

51

Hands-on!
Rolling back a deployment

kubernetes.io/docs/concepts/workloads/controllers/deployment

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#rolling-back-a-deployment

52

Kubectl Tips and Tricks
Mastering kubectl

● A few things to remember about kubectl.

○ And if you don't, check the cheat sheet.

> kubectl config view
> kubectl config use-context
> kubectl annotate
> kubectl label
> kubectl create -f ./<DIR>
> kubectl create -f <URL>
> kubectl edit ...
> kubectl proxy ...
> kubectl exec ...
> kubectl logs ...
> kubectl get pods, deployments, services
> kubectl --v=99 ...
> kubectl describe ...

https://kubernetes.io/docs/reference/kubectl/quick-reference/

53

Quick recap
Kubernetes – Kubectl – Pods – Deployments

Deployment

ReplicaSet

Deployment

ReplicaSet

Frontend
SVC

Backend
SVC

Pods

Containers

Configuration
Resources

Configuration
Resources

Ingress

55

4.
Accessing to
our apps:
Services

56

Basic Objects: Services
What it is?

kubernetes.io/docs/concepts/services-networking/service

● The key question is: how do you access your applications?

● The answer is Services, yet another Kubernetes object.

○ An abstract way to expose an application running on a set of Pods as a network service.

○ They provide a stable virtual endpoint for ephemeral Pods in the cluster.

■ This way, other Services can target them and will be redirected to the endpoints matching
the service Pod selection.

https://kubernetes.io/docs/concepts/services-networking/service

3) Connect to 10.0.0.1:1234

Backend Pod 1
Labels: app-MyApp

Port: 9376

Backend Pod 2
Labels: app-MyApp

Port: 9376

Backend Pod 3
Labels: app-MyApp

Port: 9376

apiserver

kube-proxy

Client

iptables

1) Watch Services
and Endpoints

2) Open proxy port
and set portal rules

4) Redirect to (random) proxy port

5) Proxy to a backend

57

Basic Objects: Services
What it is?

kubernetes.io/docs/concepts/services-networking/service

● Implemented via iptables.

● kube-proxy watches K8s API for new
Services and Endpoints being created.

● It opens random ports on Nodes listening
on ClusterIP:Port.

○ Then forwards to a random* service
endpoints.

■ * defaults to round-robin in
userspace.

https://kubernetes.io/docs/concepts/services-networking/service

ClusterIP

● Exposes the Service on a
cluster-internal IP.

● It is the default type.

● Only provides access
internally.

○ except if manually
creating an external
endpoint.

○ To access, run "kubectl
proxy".

● Great for development.

58

NodePort

● Exposes the Service on
each Node's IP at a static
port.

○ Defaults ports:
30000-32767.

○ The port may have to
be open in the firewall.

● Great for debugging.

● Used for manually
creating load balancers.

LoadBalancer

● Exposes the Service
externally using a cloud
provider's load balancer
(like GKE, AKS, AWS, ...).

○ Usually add extra
charges for its usage.

● Private clouds may also
implement it with a
Cloud Provider Plugin.

○ e.g., Kind + Metalib or
k3s’s klipper-lb.

Basic Objects: Services
Different types of Services

kubernetes.io/docs/concepts/services-networking/service

https://kind.sigs.k8s.io/docs/user/loadbalancer/
https://github.com/k3s-io/klipper-lb
https://kubernetes.io/docs/concepts/services-networking/service

wordpress

wordpress

wordpress

K8s cluster

External

wordpress wordpress wordpress

40.0.2.4:33311 40.0.2.5:33311 40.0.2.6:33311 40.0.2.7:33311

192.168.3.3:80

172.100.3.3:8080

30.3.2.6:80

172.100.3.4:8080

mysql

172.100.3.5:3306

192.168.3.4:3306

Types:

- ClusterIP

- NodePort

- LoadBalancer

59

Basic Objects: Services
An example

Create a new deployment (or use an existent one)
> kubectl create deployment nginx-exposed --image=nginxdemos/hello
deployment.apps/nginx-exposed created

Create a service with a command
The service listens on :8080, but the container (our app) does on :80
> kubectl expose deployment/nginx-exposed --name nginx-clusterip --port=8080 --target-port=80
--type=ClusterIP
service/nginx-clusterip exposed

Local port forwarding (the service is still internal, though)
The service listened on :8080, but we will port-forward it through the :7777
> kubectl port-forward service/nginx-clusterip 7777:8080

http://localhost:7777

60

Hands-on!
Creating a service: ClusterIP + port-forwarding

kubernetes.io/docs/concepts/services-networking/service

http://localhost:7777
https://kubernetes.io/docs/concepts/services-networking/service

apiVersion: v1
kind: Service
metadata:
 name: nginx-nodeport
spec:
 selector:
 app: nginx-exposed
 type: NodePort
 ports:
 - protocol: TCP
 port: 80
 nodePort: 30000

nginx-svc.yaml

Create a service
The service listens on :30000, but the container does on :80
> kubectl apply –f nginx-svc.yaml
service/nginx-nodeport created

Get all the services
> kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
nginx-clusterip ClusterIP 10.96.45.45 <none> 8080/TCP
nginx-nodeport NodePort 10.96.161.114 <none> 80:30000/TCP

Find out which is the IP of our cluster
> kubectl cluster-info
Kubernetes control plane is running at https://127.0.0.1:57589

nodePort:
if none, it will be
auto-generated.

port:
the port that the
container is listening to. http://127.0.0.1:30000

61

Hands-on!
Creating a service

kubernetes.io/docs/concepts/services-networking/service

http://127.0.0.1:30000
https://kubernetes.io/docs/concepts/services-networking/service

62

Basic Objects: Services
Extra: DNS

● A DNS service is provided as a Kubernetes add-on in clusters.

○ On many distributions, this DNS service is provided by default.

● When a Service is created it gets registered in the DNS.

○ The DNS lookup will direct traffic to one of the matching Pods via the ClusterIP of the Service.

● Interesting read about Headless services.

○ Services without a Cluster IP will resolve to a set of IPs (round-robin).

kubernetes.io/docs/concepts/services-networking/service/#dns

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#services
https://kubernetes.io/docs/concepts/services-networking/service/#dns

Get the service "nginx-clusterip", note that it listens on :8080
> kubectl get service nginx-clusterip
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
nginx-clusterip ClusterIP 10.96.45.45 <none> 8080/TCP
...

Run curl inside a Pod that will get deleted after running the command
> kubectl run -it --rm --restart=Never busybox --image=busybox wget http://nginx-clusterip:8080
Connecting to nginx-clusterip:8080 (10.96.45.45:8080)
saving to 'index.html'
index.html 100% |********************************| 7237 0:00:00 ETA
'index.html' saved
pod "busybox" deleted

63

Hands-on!
Accessing a ClusterIP service from inside!

kubernetes.io/docs/concepts/services-networking/service/#dns

https://kubernetes.io/docs/concepts/services-networking/service/#dns

64

That is just the beginning...

Much more to know about…

● Ingress.
● Persistence.
● Jobs, CronJobs and initContainers.
● Configuring your applications.
● Pod patterns.
● Packaging applications: Helm.
● Extra: multi-cluster management with

Rancher.

Certifications:

● CKA, CKAD, CKS, KCNA, KCSA.

Welcome to the cloud!

https://www.cncf.io/training/certification/cka/
https://www.cncf.io/training/certification/ckad/
https://www.cncf.io/training/certification/cks/
https://www.cncf.io/training/certification/kcna/
https://www.cncf.io/training/certification/kcsa/

SUSE Academic Training Program

69

What it is?

● Free Enterprise Open Source Training:

Participating universities have the opportunity to incorporate our Enterprise Open Source Product Training into their curriculum.
Universities can integrate these courses, including the technical labs, into their IT courses over the desired duration.

- SUSE Linux Enterprise Server 15 Administration.
- Kubernetes Administration.
- Rancher Manager.

● Discounted Certification Exams and eLearning Subscriptions:

In addition to free training, we're pleased to offer students a discount on:

- Certification Exams.
- eLearning Subscriptions (Silver and Gold).

More information at suse.com/c/125963

Disclaimer: this material is NOT part of the official SUSE training offering, this is just part of an employee-led
initiative. For official or certification-led training, please always refer to suse.com/training.

https://www.suse.com/c/125963/
https://www.suse.com/training/course/

Quiz time!

70

We might have some prizes for you :)

● Join using the Kahoot app or kahoot.it

https://kahoot.it

Follow us on social media:

● x.com/SUSE
○ x.com/suse_spain

● linkedin.com/company/suse
○ linkedin.com/showcase/suseespana

● mastodon.social/@suseuniversities

71

Thanks!
Contact us anytime:

- antonio.gamez@suse.com
- ibone.gonzalez@suse.com

Disclaimer: this material is NOT part of the official SUSE training offering, this is just part of an employee-led
initiative. For official or certification-led training, please always refer to suse.com/training.

https://x.com/SUSE
http://x.com/suse_spain
https://www.linkedin.com/company/suse
https://www.linkedin.com/showcase/suseespana
https://mastodon.social/@suseuniversities
mailto:antonio.gamez@suse.com
mailto:ibone.gonzalez@suse.com
https://www.suse.com/training/course/

