Software product lines, feature modelling, analysis and configuration

David Benavides <u>benavides@us.es</u> Evolución y Gestión de la Configuración U

The main goal of this lesson is to give an overview of "software product lines" from a practical and research point of view

AAFM

FOP

Part I

Software Product Lines

Real cases

nVotes

Features & Plans Contact us 🔎

Secure & easy online voting

Secure, robust and affordable internet election management solution that makes it easy for voters to cast their vote online

Real cases

Real cases

Real cases

What configurations should I test to defend my users from bugs?

Industrial Trends

Organizations are evolving

- Project Centric Software Engineering
- Product Centric Software Engineering

Software *variability* constantly increasing:

- Variability goes from hardware to software
- Variations points grows by thousands

Assets' *Reuse* is shifting

• from ad-hoc to systematic

Real example

Real example

Mass production

producing efficiently a large amount of standardized products

Mass customization

"a paradigm shift for the enterprise to offer products and services best catering to individual customer's needs whereas keeping near-mass production efficiency " [Tseng, M.M., Jiao, J. (2001)] UNIVERSIDAD & SEVILLA

production efficiency "

[Tseng, M.M., Jiao, J. (2001)]

Enable managing the variability

Traditional Approach (mass production)

Product Lines Approach (mass customization)

SPL: Activities

SPL framework

Fig. 1.2. The two-life-cycle model of software product line engineering

From "Software Product Line Engineering" by Phol et al.

A more practical view of the SPL framework

From "Mastering Software Variability with FeatureIDE"

Product explosion

Customers explosion

Technology explosion

Configuration explosion

Configuration explosion

Configuration explosion

ROOT CAUSES OF CUSTOMER REPORTED ISSUES

Taken from http://sigops.org/sosp/sosp11/current/2011-Cascais/12-yin-slides.pdf

Explosions consequences

- Product oriented development
- Fire-fighting mode
- Opportunistic reuse

- Lack of innovation
- Quality degradation
- Knowledge lost

Some "tentations"

Product portfolio diversity

Common user experience for product in the portfolio

Customization of products

What are the

SPL metaphors

Svahnberg M., van Gurp J., Bosch J., *On the Notion of Variability in Software Product Lines*. Proceedings of IEEE/IFIP Conference on Software Architectures, 2001.

SPL metaphors

Figure 1.1: SPL maturity stages: from less mature (left) to more mature (right)[DSB05]).

Evolution of an SPL

7

1

Taken from "Systems and Software Variability Management"

Proactive SPL transition approaches Reactive

Business strategy

Variability, a new degree of complexity

Software Product Lines

Variability modelling

How to model variability?

How to model variability

Inside the model

Figure 5: Example of an alternative relationship

Figure 6: Example of an optional relationship

Variability Model

Base models

How to model variability

How to model variability

Feature models were first introduced by Kang et al. in 1990

Ad-hoo tables,

SIDAD Ð SEVI

How to specify a particular product?

"An important part of something"

"A prominent or distinctive characteristic of a software system"

How to specify an SPL?

"Feature Model: A hierarchically arranged set of features to represent all possible products of an SPL"

Design a feature model for your own SPL!

- **Mandatory**: A -> B && B-> A
- Optional: B -> A
- Alternative: sum (B_i) = 1 && B_i -> A
- **Or**: sum (B_i) > 1 && (B_i) <= count(B)
- Requires: A -> B
- **Excludes**: A -> !B && B -> !A

Automated analysis of feature models: Computer-aided extraction of information from FMs

Automated analysis of feature models: Computer-aided extraction of information from FMs

Other problems!

Bibliografía

JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering. ©JOT, 2009

Vol. 8, No. 6, September-October 2009

Virtual Separation of Concerns – A Second Chance for Preprocessors

Christian Kästner, School of Computer Science, University of Magdeburg, Germany **Sven Apel,** Department of Informatics and Mathematics, University of Passau,

SOFTWARE—PRACTICE AND EXPERIENCE Softw. Pract. Exper. 2005; 35:705–754 Published online 1 April 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.652

A taxonomy of variability realization techniques[‡]

Mikael Svahnberg^{1,*,†}, Jilles van Gurp² and Jan Bosch³

Bibliografía

Effective Software Maintenance and Evolution

Software Product Line Engineering Foundations, Principles, and Techniques

Generative Programming Methods, Tools, and Applications Krzysztof Czarnecki Ulrich W. Eisenecker