
George Stocker
Discovering how to build better software, together.

Please stop recommending Git Flow!

Git-�ow is a branching and merging methodology popularized by this blog post,

entitled “A Successful Git branching model”.

In the last ten years, countless teams have been snookered by the headline and

dare I say lied to.

If you read the blog post, the author claims they successfully introduced it in their

projects, but purposefully doesn’t talk about the project details that made it

successful.

And for the rest of us, this is mistake #1 of trusting the blog post. I’ll claim it as a

truism that not all strategies work in all situations, with all people, in all

contexts, and I apply that same logic to this branching model.

The end, right? Well, not quite. I can tell a few of you are unconvinced by this line

of reasoning, so let’s dig deeper into why the git�ow branching model should die

in a �re.

GitFlow Is Complicated On its Face

Even before you think about Microservices, or continuous delivery, git�ow is

complicated. Take a look at this image and tell me it’s immediately intuitive:

https://georgestocker.com/
https://nvie.com/posts/a-successful-git-branching-model/

(source: https://nvie.com/posts/a-successful-git-branching-model/)

So here you have feature branches, release branches, master, develop, a hot�x

branch, and git tags. These are all things that have to be tracked, understood, and

accounted for in your build and release process.

https://nvie.com/posts/a-successful-git-branching-model/

More so than that, you also need to keep track of what branch is what, all the time.

The mental model you need to retain for this to be useful carries a high cognitive

load. I’ve been using git for 10 years now, and I’m not even sure I’m at the point

where I could mentally keep up with what’s going on here.

Git�ow violates the “Short-lived” branches rule

In git, the number of merge con�icts with people committing to a branch will

increase with the number of people working on that branch. With git-�ow, that

number increases even more, because there are three other branches (of varying

lifetimes) that merge into develop: Feature branches, release branches, and hot-

�xes. So now the potential for merge-con�icts is not linear, it’s going to

potentially triple the opportunities for merge con�icts.

No thank you.

While I hesitate to say “Worrying about merge con�icts” is a valid reason not to

pursue a branching strategy like git�ow; the amount of potential complexity that

is introduced when all these branches come together is too much to overlook.

This would be �ne if you have an organization with a low commit-velocity rate;

but for any appreciable fast moving organization or startup, this won’t be the

case.

Git�ow abandons rebasing

I recognize rebasing is a complex topic; but it’s important to this conversation. If

you pursue git�ow, you’re gonna have to give up rebasing. Remember, rebasing

does away with the merge commit — the point where you can see two branches

coming together. And with the visual complexity of git�ow, you’re going to need

to visually track branches, and that means no rebasing if you want to unwind a

problem.

Git�ow makes Continuous Delivery Improbable

Continuous delivery is a practice where the team release directly into production

with each “check-in” (in reality, a merge to master), in an automated fashion.

Look at the mess that is git�ow and explain to me how you’re going to be able to

continuously deliver *that*?

The entire branching model is predicated o� a predictable, long term release

cycle; not o� releasing new code every few minutes or hours. There’s too much

overhead for that; not to mention one of the central practices of CD is to roll-

forward with �xes; and Git�ow treats hot�xes as a separate entity to be carefully

preserved and controlled and separated from other work.

Git�ow is impossible to work with in multiple
repositories

With the advent of Microservices; there’s been more of a push towards the idea of

micro-repos as well (cue commenter shouting “they’re orthogonal to each

other”), where individual teams have control over their repositories and

work�ows, and where they can control who checks in to their repositories and

how their work�ows work.

Have you ever *tried* a complex branching model like git�ow with multiple

teams, and hoped for everyone to be on the same page? Can’t happen. Soon, the

system becomes a manifest of the di�erent revisions of the di�erent repositories,

and the only people who know where everything is at are the people pounding out

the YAML to update the manifests. “What’s in production” becomes an

existential question, if you’re not careful.

Git�ow is impossible to work with in a monorepo as
well

So if micro-repos are out due to the di�culty in coordinating releases, why not

just one big branching work�ow that all the microservices teams have to abide by

for releases?

This works for about 3.2 seconds, or the time it takes for a team to say “This has

to go out now”, when the other teams aren’t ready for their stu� to be released. If

teams are independent and microservices should be independently deployable,

you can’t very well tie your work�ow to the centralized branching model you

created in your mono-repo.

Who should (and shouldn’t) use Git�ow?

If your organization is on a monthly or quarterly release cycle and it’s a team that

works on multiple releases in parallel, Git�ow may be a good choice for you. If

your team is a startup, or an internet-facing website or web application, where

you may have multiple releases in a day; git�ow isn’t good for you. If your team is

small (under 10 people), git�ow puts too much ceremony and overhead into your

work.

If your teams, on the other hand, are 20+ people working on parallel releases,

git�ow introduces just enough ceremony to ensure you don’t mess things up.

Ok, so my team shouldn’t use git�ow. What should we
use?

I can’t answer that. Not all branching models work for all teams, in all contexts,

and all cultures. If you practice CD, you want something that streamlines your

process as much as possible. Some people swear by Trunk-based development

and feature �ags. However, those scare the hell out of me from a testing

perspective.

The crucial point I’m making is to is ask questions of your team: What problems

will this branching model help us solve? What problems will it create? What sorts

of development will this model encourage? Do we want to encourage that

behavior? Any branching model you choose is ultimately meant to make humans

work together more easily to produce software, and so the branching model needs

to take into account the needs of the particular humans using it, not something

someone wrote on the internet and claimed was ‘successful’.

https://paulhammant.com/2013/04/05/what-is-trunk-based-development/

61 thoughts on “Please stop recommending Git

Flow!”

Stephen Nield

March 4, 2020 at 10:03 pm

This is an interesting read. I’d be interested to know your own git work�ow as at

least one viable alternative.

Louie Christie

March 5, 2020 at 1:22 am

Ok, so my team shouldn’t use git�ow. What should we use?

CR Drost

March 5, 2020 at 12:52 pm

Use Three�ow! (The “No Machete Juggling” blog if you have trouble googling

it)

I mean every use-case is going to be di�erent but if you are at a small startupy

place with repos for single apps, Three�ow is going to be a solid improvement.

The basic idea is that you want in this case everyone in the same room having

the same conversation, so you commit to the idea that we should have a place

Author’s end note: I thought about using the ‘considered harmful’ moniker that is so

common in posts like this; but then did a google search and realized someone else

already wrote Git�ow considered harmful. That article is also worth your time.

geostock March 4, 2020 Uncategorized/ /

https://www.louiechristie.com/
https://twitter.com/crdrost
https://www.endoflineblog.com/gitflow-considered-harmful
https://georgestocker.com/author/geostock/
https://georgestocker.com/2020/03/04/please-stop-recommending-git-flow/
https://georgestocker.com/category/uncategorized/

where we merge dev code on the daily as our source of truth about the system.

No long-lived feature branches. We subordinate all the rest of our process to

this vision. “But I need to control what features get deployed in my releases”—

Not A Problem For Your Git!! That needs to be handled in the logic of the repo

itself, either with DB states or env vars that push that question to the last

possible moment or by a checked in �le that de�nes statically what features are

enabled, which devs locally overwrite. “But if we have 7 feature toggles then the

QA team has to test 2^7 = 128 di�erent con�gurations, maybe”—you have to

get them talking with everybody better and also restrict the �ow of feature

requests into your development system so that it is driven by your slowest step,

a limit on the number of feature toggles we allow: and you have to clean up

branches after they have been deployed for a week. “But my devs check in

breaking code”—you need test suites, feature toggles, code review to make sure

they don’t, then.

You subordinate everything else, “I will do whatever I need to, to ensure that

everyone is in the same room having the same conversation about the same

codebase. That is the one thing I will not budge on, that all my developers

checks in their work daily and see merge con�icts early so they can collaborate

rather than step on each others’ feet.” And it works extremely well at smaller

scales, IF you can get developer buy-in.

(Developers �nd feature toggles to just *look ugly* so you have to really lean

hard on the fact of “look we need you to do this so that we don’t waste half your

time in release planning meetings and other crap. I know it is ugly but here are

the ways we are going to bound its ugliness and let the code eventually become

beautiful.”)

Rune

March 9, 2020 at 9:25 am

I have only used feature toggles a handful times, but I suspect it is the way to

go.

Assuming you have a sane release policy that is. If you �nd yourself doing lots

of patches while maintaining several versions, then you will be stuck with a

more convoluted work �ow.

My least favorite initialism: “LTS”. Imagine patching a LTS branch and then

bring that �x forward into your current release as well as your main dev

branch. Or better yet: You start out patching the current release and after a

while somebody asks “what about those still running the LTS version?”. (my

reply usually is: “Fine, the current release is now considered LTS. Have them

upgrade as there are a bunch other useful �xes in there too.”) Oh hang on,

should we merge the LTS �x into master as well..?

I suspect many of us could embrace Continuous Deployment with much more

vigor. At least when the user interface is mostly web and no local deployment

is involved. At that point I believe the full git work�ow becomes overkill.

Geshan Manandhar

March 5, 2020 at 2:23 am

Use simpli�ed git�ow.

ertre

November 19, 2020 at 10:35 am

This is the answer. You’re not forced to use every branch that GF proposes.

Craig

March 5, 2020 at 3:25 am

So, your post is to pull someone’s idea to pieces while o�ering nothing of value

yourself? I am disappointed this article made it onto HN

Je�

March 9, 2020 at 11:07 am

https://geshan.com.np/

He literally wrote a thoughtful reason as to why he didn’t recommend

something speci�c and the most important thing of all, to ask questions of your

team. Teams should be thinking for themselves more and relying on magical

blog posts less. Don’t trash someone if you aren’t going to take the time to

understand their point of view.

Chris Graham

May 19, 2022 at 12:07 am

Devs (like people in general) su�er from a lot of group think and intellectual

lazyness. Rather than mandating a solution, the best possible answer is: Ask

the team what works for them.

Where this fails however, is when it is a young inexperienced team (who think

they know it all) but lack the experience to not get into trouble. That’s the

time when I mandate things. To save them from themselves.

Kira

March 5, 2020 at 6:56 am

To be honest, you start with:

“doesn’t talk about the project details that made it successful”

Well Git�ow is about 10 years old, so there are many good projects already worked

with it.

“GitFlow Is Complicated On its Face”

Not really, maybe redundant but not complicated.

“Git�ow is impossible to work with in a monorepo as well”

No, it’s maybe not the best solution for a fast agile devEnv. but else its working

very well.

Even if you have a bi-weekly release cycle it’s working �ne.

I would love to share a project of our team, but as you can expect I’m not allowed

Ok, so my team shouldn’t use git�ow. What should we use?

You can’t answer that?

Well there are so many other work�ows that you could give some examples

But yea, you showed some example where you can get problems but to say it’s not

good is kinda unfair.

So i think, you are not completely wrong, but I also have to say that you don’t

really grasp the concept behind git�ow as it’s not really complicated if you

understand git.

It’s also discussed very often in di�erent forums and so on.

https://stackover�ow.com/questions/18188492/what-are-the-pros-and-cons-

of-git-�ow-vs-github-�ow

Leszek

May 6, 2021 at 4:32 am

exactly.

Ian

March 5, 2020 at 10:27 am

Quite frankly, Git should die in a �re.

Not that what Git does is bad. But the idea that it needed no useful tree structured

visual interface that looked somewhat like �le explorer, SourceSafe or team

foundation server is just programmer arrogance at its worst. Those interfaces

happened for a solid human-factors *reason* and were not whimsical

afterthoughts. They gave the user a mental model, showed both local and remote

server information accurately and allowed pinpoint actions on a �le, folder or

project that you could plainly SEE. Command line options were available and I

used them in batch �les frequently, but the batch �les were useful because I could

SEE what I was doing, simultaneously, both locally and on the server.

https://stackoverflow.com/questions/18188492/what-are-the-pros-and-cons-of-git-flow-vs-github-flow

Visibility and local action is what made older version control systems

immediately useful with almost no training. Git, SourceTree GitHub desktop,

et. al. Not so much. Git seems *designed* to hide information, possibly with the

intent of preventing mistakes. Of course, if you make it di�cult to make easy

mistakes, you can also make it extremely di�cult to do anything.

It’s not that Git isn’t learnable. I use it daily. It’s just that it was a poorly thought

out alternative. It’s *technically* great. It’s the human factors part that’s a

disaster.

And frankly, if you don’t understand the human nervous system and you’re

making a human facing product, you’re a lousy engineer because you either don’t

understand or ignore half the system you’re building.

DarkSwordsman

March 5, 2020 at 1:45 pm

I’ve been a developer for only 2 or 3 years and I have no problem visualizing git

branches and what not in the terminal. The only user interface I use is the

Github website, and that’s strictly for issues and PRs. I rarely look at actual

branch graphs or anything.

erwer

November 19, 2020 at 10:40 am

I’ve been a developer for ~25 years at large projects and companies like IBM,

and bleeding edge ones in Manhattan. I �nd Git to be overengineered and a lot

of that is forced on the user developer. If you’re a new developer and have

lived in a vacuum you might not have experienced systems that don’t have

anywhere near that level of un-intuitiveness but still have most of the power.

This is why big selling points of Git clients is to obscure that, which they can

only do so much.

Gottfried Theimer

March 5, 2020 at 10:29 pm

“It’s not that Git isn’t learnable. I use it daily. It’s just that it was a poorly

thought out alternative. It’s *technically* great. It’s the human factors part

that’s a disaster.”

I agree with this and add that in this respect Git is typical for what comes from

the Linux world.

Fabricio Bertoncello Scariot

September 28, 2020 at 8:58 pm

Said everything I wanted to say, everything is turning into Linux, we are

wasting time decorating and typing commands instead of spending this time

on business improvements.

Thomas Wheeler

March 5, 2020 at 10:42 pm

“Quite frankly, Git should die in a �re.”

I would like to take your words out back and shoot them. Git’s commandline

interface is quite rightly criticized, but git is the only versioning system I’ve

used that gets it right[1]. Period. Its DAG, and especially, the concept that every

commit represents the entire working tree at a moment-in-time, is both simple

and correct.

100x over and over, I would rather use a tool that gets it right and has a

completely shit user interface, than a tool that has a beautiful user interface but

doesn’t get things right.

[1] I’ve heard great things about Mercurial and couple other tools, but I know git

and this thread is about git.

Fabricio Bertoncello Scariot

September 28, 2020 at 9:01 pm

For those who knew SourceSafe, CVS and SVN, it doesn’t, Git doesn’t make

any sense. I didn’t see any bene�t, and until today I haven’t met anyone who

uses the big di�erence that is the local commit

erertre

November 19, 2020 at 10:42 am

It’s possible to have both. Software development didn’t start 15 years ago and

was just �ne.

John Blanco

April 14, 2021 at 10:39 am

Sure, software development existed more than 15 years ago before git, but let

me tell you what it was like:

I used to use Subversion. Making branches was a nightmare of nightmares. I

never did it on my own, we hired somebody to manager it. We paid someone

50K a year to do just that.

Perforce…oh, Perforce. To avoid con�icts, you LOCKED �les in Perforce.

Wanted to make a change to a source code �le, better hope nobody was doing

it �rst! They literally solved con�icts by not letting ANY TWO PEOPLE work on

the same �le at the same time.

SourceSafe? We had a TEAM of SourceSafe engineers to manage that shit.

So yeah, git is pretty good? Can it be complex? At times, maybe. But it’s

solving a VERY COMPLEX problem. Be thankful!

http://gravatar.com/zablanc698144091

John

March 5, 2020 at 11:34 pm

git –all –decorate –oneline –graph

Alias that to ‘git adog’.

Git was designed for people who thought a certain way, who subscribed to a

certain methodology, and who had a certain level of technical ability. Not all

humans are the same. It wasn’t poorly thought out – it just wasn’t what you

wanted. The designers of git aren’t the ones su�ering from programmer

arrogance at it’s worst.

Eduardo Brites

March 6, 2020 at 7:56 am

I love Git and I agree with you, I use Git on Visual Studio 2019 and I can’t

rebember the last time I needed to use the command line.

Bloodgain

September 18, 2020 at 9:00 pm

You have fair criticisms of the git command line interface, but git was never

really supposed to be the direct interface for the general user. That’s why GUIs

were developed for it. These GUIs *should be* developed separately, and the

design philosophy of git is to support outside tools by making everything

available, including the plumbing and the repository tree itself.

That said, for power users (i.e. me), the command line porcelain commands are

excellent. I sometimes have to reference a doc page (`git help log`) to remember

the options — just like everything else in shell world — but I can �nd out

anything I want with a command or three. Yes, the litany of options available

for commands like `git log` is overwhelming, but the options are mostly

intuitive, and this is exactly the use case that aliases are for. The default output

of `git log` is only moderately useful for the most common purposes, which is

true of many other git commands, but it’s also the most obvious output: “show

me the commit log”.

Xedni

October 10, 2020 at 4:53 am

To paraphrase David MacIver:

“Optimising your notation to not confuse people in the �rst 10 minutes of

seeing it but to hinder readability ever after is a really bad mistake.”

Coming from svn/tfs/visit, yes. Git is daunting. I’ll admit it took me about a

good year to feel like I wasn’t an active threat to the consistency of any code

base I worked on. But getting serious about understanding Git is essential to

being a programmer because a) its actually *really* well designed and b) people

know it. If all you’re after is a Gui, there are plenty (Git ships with a minimalist

Gui; another example is GitKraken). But the real reason it seems poorly

designed is (I assert) user error. Git is dramatically di�erent from most other

source control systems. harpsichord when you’re used to playing an accordion.

Yes they both make noise, but the similarities don’t extend much beyond that.

So “�xing” git to be more like svn is like asking your car dealer to put the

swimming pool back in your car. Cars don’t have swimming pools, and you’ll

just end up with a car that handles like crap, with a pool nobody ever swims in.

All poetic waxing aside, if you’re still shakey with Git, I’d recommend this

video:

https://youtu.be/1�BJ4sVUb4

You may not come out the other side ready to merge 10 di�erent code branches

while spinning a basketball on your nose, but you *will* understand the design

decisions that went into it, and identify places you may have been hammering

square pegs into round holes.

ewtwe

November 19, 2020 at 10:38 am

I agree, and the terrible unintuitive naming of certain functions is misleading at

times. I still get terri�ed sometimes when I perform certain functions because

https://youtu.be/1ffBJ4sVUb4

several times in the past it’s exploded.

The whole system is overly complicated compared to something logical like

good old sourcesafe (which does indeed have it’s own issues)

I use Git daily, and Gitkracken is a fantastic UI, but I still think the technology

has major issues.

Bryan Finster

March 5, 2020 at 10:36 am

So much good here. Posting this link internally.

Piotr Mionskowski

March 5, 2020 at 12:09 pm

I never liked git �ow as well. For us, assuming a small team, the following works

good https://brightinventions.pl/blog/how-do-we-use-git/

Carl

March 5, 2020 at 12:14 pm

Git �ow is good enough to get started and will actually take you really far. It’s a

recipe for how to use branches e�ectively, because they’re cheap.

Now there are a lot of other branching models that are good for a lot of di�erent

scenarios.

Complaining about one branching model without even recommending when the

others are suitable makes for poor reading.

Rod

March 5, 2020 at 12:14 pm

I recommend Three-Flow as an alternative:

https://www.nomachetejuggling.com/2017/04/09/a-di�erent-branching-

https://brightinventions.pl/
https://brightinventions.pl/blog/how-do-we-use-git/
http://www.nomachetejuggling.com/
https://www.nomachetejuggling.com/2017/04/09/a-different-branching-strategy/

strategy/

Tristan Zimmerman

March 5, 2020 at 12:40 pm

I could not agree more and I had the same reaction when I saw that diagram many

years ago.

For anyone asking what to do instead of Git�ow, I’d suggest this: Start simple.

– Don’t commit to Master (obvs).

– All work is done in a separate branch that will be merged to master.

– Keep your PRs small so they are easy to understand and easy to review.

– Keep Master in a constantly deployable state.

To handle the complications of adding in large features, �nd ways to hide them in

prod so they can get into Master as early as possible. Feature �ags are fantastic

for this, but even building a temporary route so you can view the changes but not

expose them to your user will work just �ne.

Also, writing tests for work also makes small, frequent merges less of a

dangerous game. They aren’t perfect, but if everything has a test around it then

you’re less likely to break things even if you’re merging a dozen PRs a day.

Anyway, love the post.

Bill

July 13, 2020 at 8:38 am

This is essentially git�ow, the author has somehow confused feature branching

with branches living forever.

I’m not entirely sure why he believes that git�ow does not work with CI/CD

since when using git�ow one only releases from a release branch, which is

https://www.nomachetejuggling.com/2017/04/09/a-different-branching-strategy/

taken from the development branch, which is a composite of all of the (short

lived) feature branches.

feature/hot�x/bug�x branches are short lived, nothing in git�ow says that

these branches should live longer than they are needed

git�ow might not be best suited to everyone and every project, but it certainly

does not pose any problems for continuous integration or delivery. It does mean

that a team does not need to implement feature hiding at all -which generally

entails extra code which is super�uous to the actual solution.

Ryan Cline

March 5, 2020 at 3:58 pm

To pick up where the author left o�:

In short, Trunk-based Development is the solution you are looking for.

https://trunkbaseddevelopment.com/

Trunk-based Development has it all, and that website should be considered

required reading for anyone implementing or upgrading their personal or

professional development work�ow.

If that site doesn’t convince you, then read State of Devops 2019

https://services.google.com/fh/�les/misc/state-of-devOps-2019.pdf

So long GitFlow, what we had…was not good.

Cheers, to your better development future! Welcome!

Bill

July 13, 2020 at 8:40 am

I’m really not convinced that trunkbaseddevelopment di�ers from git�ow at all

https://trunkbaseddevelopment.com/
https://services.google.com/fh/files/misc/state-of-devOps-2019.pdf

Eric Rini

March 5, 2020 at 4:43 pm

Yup. Git �ow is a good example of people knowing what to do and forgetting why

they were doing it.

Ben

March 5, 2020 at 5:00 pm

I echo the other commenters: can you give an example of a project you worked on,

and what Git branching model was successful and why? Otherwise this post only

serves to discourage and confuse people like myself who have used Git�ow in the

past.

d potter

March 5, 2020 at 6:24 pm

Huh? There are way less merge con�icts when using git �ow correctly. The

diagram above is missing a few ghost merges from develop down to feature

branches (every time there’s a push by someone else to development,

speci�cally). But that’s one of the main draws – having a highly hierarchical and

rigidly adhered-to branching strategy eliminates merge con�icts that aren’t

directly related to code the developer who’s doing the pull created themselves.

I could go point by point on why it seems like you’ve never worked with people

who knew how to do this correctly and why that’s coloring your opinion, but I just

got a 70 year old on this model from TFS last year and got him loving it, so it’s not

too late for you.

But just FYI: “This has to go out now” is how you know to use a hot�x branch

which works against only production/master code. “What’s in production” is

always easy – it’s what’s in master. Continuous delivery is a checkbox for

development, and you add a combo/dropdown that gets updated once per release

for QA to point to the new release branch. And if you can’t coordinate releases and

shared code with GitFlow, you’re not going to have any better time rolling your

own structure and keeping track of that being di�erent every release…

Good luck out there.

Bill

July 13, 2020 at 8:42 am

I agree 100%

Using git�ow is a change in mindset, but it certainly does not prevent CI or CD.

I can’t get my head around why the author assumes that feature branches are

not short lived when using git�ow

Zeno Lee

March 5, 2020 at 11:09 pm

Trunk based development is a great simple alternative

Brent DeMark

March 7, 2020 at 7:52 pm

This is what we’ve been using for years. And it works well. I would say start

here, and if you need something more, then look to more involved branching

strategies like git �ow. I would caution against jumping to something so

complicated right out of the gate for new projects.

Bill

July 13, 2020 at 8:43 am

It’s actually no di�erent to git�ow, so it’s not really an alternative

Scott Davey

March 6, 2020 at 3:46 am

I’ve been successfully using Git Flow for well over 5 years in a multi-repo, micro-

service, continuous delivery environment and I’ve found it to be a really good �t

for our team.

What Git Flow did for us is to standardise a development �ow, which removed

di�erences between our Git experts and others, and gave everyone a shared

mental model so make teamwork better.

Despite this blog post’s experiences, in our team it actually reduced merge

con�icts, reduced long running branches, and eliminated lost branches because it

also eliminated tricky git-fu merges of topic branches along with a bike-

shedding.

It gave our work�ow better clarity.

We have even tied our processes to git �ow concepts, and this meant we all had a

shared understanding across the team including devs, ops and even managers,

who knew, for example what type of work could be a hot�xed vs needing a full

release.

Could all these bene�ts come another way? Well, certainly. But for us there was a

clear before/after transition where all our prior git problems disappeared after we

introduced Git Flow. It isn’t perfect, but it solves more problems than it creates

for us, and we have made it work in a continuous delivery, micro-service and

buzzword compliant environment.

Paul Hammant

March 6, 2020 at 4:19 am

Hey George, it’s trunk-based development you’re meaning not trunkless

development. It’s been written and talked about for 20 years now

https://trunkbaseddevelopment.com/

Salem Korayem

March 6, 2020 at 4:46 am

Git �ow is a scalable methodology that you. The one in the diagram is the extreme

case.

In my company, we use master, staging (like develop branch in the diagram) and

feature branch everything from staging. That’s it. No hot�x or release branch.

We link all PRs with Jira through a script which updates Jira issue a custom �eld

that speci�es whether this issue has been merged or not and if merged, in which

branch: staging or master or both. This way we can easily do a JQL and know

where is each issue at.

If I feature branch from staging today and by the time I �nish work, the staging

bench gets updates, I rebase the feature branch onto staging.

The fact that you dont suggest an alternative might imply you didn’t try anything

else that actually works before writing this post.

Bob Barbell

March 6, 2020 at 8:20 am

This publication level is around this:

Cars are bad! Because:

– demands on gas

– you should have driving licence and study laws to drive a car

– they move only when you start engine and press pedals

– requires periodical service

– there are higher risks of car accident

– you must decide which color your car should have

Any approach have its own advantages and disadvantages. And it is about

knowing how to use accessible tools properly and not about proclaiming of “stop

recommending this tool”. Git�ow is the perfect tool for delivering changes to

code and it is de�nitely better than many custom approaches people usually

invent.

Git�ow real disadvantages mostly a�ect project management and planning

processes and not the software development itself.

Captain Obvious

March 6, 2020 at 9:07 am

So to sum up: there is not only a git-�ow approach and you should choose from

teams need. Also sounds like a problem to handle more than one branch

Anushervon Saidmuradov

March 6, 2020 at 5:13 pm

This is something that works for us:

– Single master branch where all the changes go. No commits made here directly

(exception can be made for hot�xes)

– Feature branches are created from the master HEAD and should be short lived.

– Environment branches (dev, stage, prod), unlike feature branches, are

permanent and are always rebased from latest HEAD of master. Changes to these

branches trigger the CI/CD pipeline to deploy into those environments

automatically. We use separate Kubernetes clusters hosted on GCP/Azure/AWS as

the deployment environments. No commits should be made directly to these

branches, all commits go to master via feature branches

Daniel Marbach

March 7, 2020 at 4:04 am

We had GitFlow for many years and the biggest problem we had is that people

continuously forgot to bring back hot�xes into develop branch. Now with release

�ow this problem is gone and we can still maintain and hot�x multiple supported

versions which is a key concern for us

http://planetgeek.ch/

https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-

microsoft/release-�ow

Iurii

March 10, 2020 at 9:12 pm

1. What is on PRODUCTION? That’s simple – master

2. Why are you mixing microservices and GIT? Why microservice team should

depend on another? That’s whole point that teams are fully independent one can

has Git, another Subversion or X(put name). Di�erent versioning etc.

3. Propose rather than blame.

Stefano

March 14, 2020 at 7:25 am

I stopped reading at the paragraph about rebaseing. Dude, if you “recognize

rebasing is a complex topic”, go back to the classroom and learn GIT from ground

up. Rebase is – if you once understood it – not at all complex. I use GitFlow on a

daily base and are able to rebase.

Bill

July 13, 2020 at 8:47 am

rebasing instead of merging from dev is a good practice IMO, and git�ow really

does not prevent this at all

Alex

April 30, 2021 at 11:29 am

This was also my impression.

The author has the same complaints as junior devs �rst introduced to git and

CI/CD as a concept. After you daily drive git�ow for a couple weeks and see the

https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/release-flow

issues it prevents/negotiates you never go back.

LincWong

March 19, 2020 at 9:38 pm

i think gitlab-�ow is the answer.

Gesiel Kloeppel

March 20, 2020 at 4:16 pm

I don’t understand how so many ppl like GitFlow. Are those ppl managing

releases and hot�xes? I doubt it. If you think you like it and you don’t have release

and hot�x branches, you probably don’t do GitFlow.

In my understand, GitFlow is valuable just if you need to support more than one

version of your software. In other cases, a production-like master is enough.

Alexey Lebedev

June 5, 2020 at 11:25 am

Dear George,

Thank you so much for this post! It hurts me to see people using git�ow. I

personally think that it’s very ine�ective and awkward model.

I remember how we were choosing branching model. We contiously rejected

git�ow (and it was the best decision we ever made), although it became very

popular.

We came up with the following quite simple branching model:

-we have master branch, which correponds to prod

-if we want to deploy some changes on prod, we prepare or branch, which will be

merged into master

-branches for deployed tasks are merged into branch.

– is merged into master

-BEFORE ANY BRANCH IS MERGED IT MUST BE REBASED, con�icts resolved and

ALL MERGES ARE ALWAYS FAST-FORWARD (without merge-commits)

We had 20+ people commiting in the same repository and our git history was

clean and clear without a single merge commit. We’ve been using this model for

years and it proved to be very good.

I feel bad when I look at people’s repositories with all these merge commits…

How do they even know, what’s going on there??

Yes, you must know how to use rebase. But if you are professional developer you

must be good with git

Bill

July 13, 2020 at 8:49 am

How is this any di�erent to using git�ow?

Pingback: Weekly CW011-2020 – [ONLY DEV INSTANCE!] – Findings and

thingies

ograterol

May 8, 2021 at 7:28 pm

Interesting … I think git�ow is an alternative, but there are others that o�er more

capabilities. I like gitlab or github �ow.

Pingback: This Is How We Branch - laredoute.io

Rineez Ahmed

July 18, 2021 at 11:09 pm

Just �nished reading this and I feel so ClickBaited! x-(

While there are some valid points about not blindly following some work�ow just

because some people calls that defacto or standard(that’s true for all practices,

https://andre3.bering.in/posts/2020-03-13-weekly-cw011-2020/
http://gravatar.com/ograterol
https://laredoute.io/blog/this-is-how-we-branch/

not just work�ow) the gist of the article doesn’t match the title of the article. This

post itself is recommending Git�ow for certain cases. So de�nitely CLICKBAIT!

Vali Spam

September 17, 2021 at 4:58 am

I call this a click bait article.

It has a catchy title “Please stop recommending Git Flow!”. The title makes it

sounds like an end-all-be-all take on git�ow. It then goes on to argue how you

should not use git�ow if you have a microservices architecture which gets

deployed often.

Most developers work on line-of-business apps where a conservative develop-

qa-release-someday cycle is used. Most developers in my neck of the woods work

on such systems.

Damien

November 17, 2021 at 6:05 pm

Really depends on how you use it. We have been using git�ow for 6 years and

never had any issues with it. I still swear by it.

George Stocker Powered by WordPress.com./

https://georgestocker.com/
https://wordpress.com/?ref=footer_custom_powered

