
Departamento de
Lenguajes y Sistemas Informáticos

escuela técnica superior
de ingeniería informática

EGC

Gestión de la construcción e
integración continua
Build engineering, continuous
integration

Varias páginas de integración continua están tomadas de Marty Stepp
http://www.cs.washington.edu/403/ y Bruce Altner y Brett Lewinski (NASA)

http://www.cs.washington.edu/403/

Ejemplo de otro dominio

ENSAMBLAR BICIS

¿Qué hay que hacer para
“ensamblar” /”construir”

software?

Introducción

Integración

Integración continua

Resumen

Bibliografía

Escenarios habituales

¿Cómo hacemos las construcciones
en estos casos?

1. Tenemos un equipo de trabajo distribuido
¿Compilación en local o en remoto?

2. Tenemos varias construcciones y entregas
¿Cómo identificar los ejecutables? ¿los ponemos bajo control de

versiones?

3. Nuestro proyecto usa librerías externas al
proyecto (e.g. *.jar)

¿Cómo se gestionan las dependencias?

Compilaciones locales o remotas

Servidor de
compilación

Repositorio de
código

Puesto 1

Puesto 2

Puesto n

Equipo
distribuido

Compilaciones locales o remotas

Servidor de
compilación

Repositorio de
código

Puesto 1

Puesto 2

Puesto n INTEGRACIÓN

Versionado de los resultados
Varias

construcciones y
entregas

$>java -version

java version "1.6.0_20"

Java(TM) SE Runtime Environment (build 1.6.0_20-b02)

Java HotSpot(TM) 64-Bit Server VM (build 16.3-b01, mixed mode)

Repositorio de artefactos
Gestión de

dependencias

Introducción

Integración

Integración continua

Resumen

Bibliografía

Integración

● Integración: Combinar 2 o más unidades de
software.

● A menudo un subconjunto del total del
proyecto (!= system testing)

¿Por qué hay que
preocuparse de la

integración?

Integración

● Integración: Combinar 2 o más unidades de
software.

● A menudo un subconjunto del total del
proyecto (!= system testing)

¿Por qué hay que
preocuparse de la

integración?

“Siempre que haya algo difícil (“painful”), hay
que hacerlo cuánto antes mejor” [Humble]

Integración por fases

● Integración por fases ("big-bang"):

● Diseño, códificación, pruebas, depuración, cada
clase/unidad/subsistema de manera separada.

● Lo combinamos todo

● “rezamos”

Integración incremental
● Integración incremental:

● Se desarrolla un “esqueleto” funcional de la
aplicación/sistema

● Diseñar, codificar, probar y depurar cada nueva
pieza pequeña

● Integrar esta pieza con el equeleto.

● Probar/depurar antes de añadir nada nuevo

¿Ventajas e
inconvenientes de

integración por
fases e integración

incremental?

Integración top-down

● Integración top-down:
Empezamos por las capas de interfaz gráfica
(UI) externa y trabajamos hacia dentro

● Debo escribir (muchos) stub de las capas inferiores para que

las capas de la UI puedan interactuar.

● Permite posponer decisiones de depuración y
diseño complejas (¿Es esto malo?)

Integración bottom-up

● Integración bottom-up :
Empezar por las capas de lógica / datos /
recursos y subir

● Se deben diseñar pruebas de integración para las capas
inferiores

● Es posible que no se descubran errores de la UI de alto nivel
hasta muy tarde

Integración "Sandwich“

Integración “sandwich”:
Conectar los elementos claves de la UI con
elementos clave de los elementos de las capas
inferiores

● Se pueden añadir capas intermedias más adelante a
medida que se necesite

● Ventajas e inconvenientes con respecto a las demás?

Introducción

Escenarios

Integración continua
• Definición

• Arquitectura

• Builds

• Servidor de CI

• Pruebas y CI

• Inspección

• Feedback

• Pros/cons

• Herramientas

• Lo esencial

Resumen

Bibliografía

Continuous Integration

● Idea nacia de Martin Fowler; parte de lo que se
conoce como XP y métodos ágiles

● 10 principios:
1. maintain a single source repository

2. automate the build

3. make your build self-testing

4. everyone commits to mainline every day

5. every commit should build mainline on an
integration machine

6. keep the build fast and short

7. test in a clone of the production environment

8. make it easy for anyone to get the latest
executable

9. everyone can see what's happening

10. automate deployment

What is CI?, The Build Cycle
There are many variations to the process, but the basic CI build

cycle consists of these key steps:

 Developer commits changes to the source code repository

 Build server executes the master build script, or delegates
execution to another server

» Checks out source code

» Builds executable version of the application

» Runs other jobs, such as testing and code
inspection

 Team is notified of build results through a feedback mechanism

» If alerts are generated, the team takes immediate
action to correct problems

» If a code fix is needed, developer commits the
corrected code back to the repository; this action
kicks off a new build cycle.

Introducción

Escenarios

Integración continua
• Definición

• Arquitectura

• Builds

• Servidor de CI

• Pruebas y CI

• Inspección

• Feedback

• Pros/cons

• Herramientas

• Lo esencial

Resumen

Bibliografía

A Roadmap to Continuous

Integration

—23—

August 16, 2010

Aquitectura del sistema de CI

The key to fixing problems quickly is finding them quickly.
– (Fowler, 2006)

Definition: CI is the practice of regular, comprehensive, and automatic building and testing
of applications in software development.

Figure 1: System and Software Architecture Supporting a CI Build

A Roadmap to Continuous

Integration

—24—

August 16, 2010

Artifacts Needed

● A build usually involves more than source
code files. Other items may include:

● Project and third-party components and
libraries

● Configuration files (e.g. *.properties)

● Data files and database scripts

● Test scripts

● Build scripts

● Properties files

● All items except project and third-party
libraries should be stored in the source
code repository…. What about binaries?

Introducción

Escenarios

Integración continua
• Definición

• Arquitectura

• Builds

• Servidor de CI

• Pruebas y CI

• Inspección

• Feedback

• Pros/cons

• Herramientas

• Lo esencial

Resumen

Bibliografía

Daily commits

"Everyone commits to the mainline every day."

● daily commit: Submit work to main repo at end of
each day.

● Idea: Reduce merge conflicts; avoid later integration
issues.

● This is the key to "continuous integration" of new code.

● Caution: Don't check in faulty code (does not compile,
does not pass tests) just to maintain the daily commit
practice.

● If your code is not ready to submit at end of day, either
submit a coherent subset or be flexible about commit
schedule.

A Roadmap to Continuous

Integration

—27—

August 16, 2010

Essential Characteristics of a CI Build

 The build is completely automated,
usually through the execution of a
single script.

 No matter how triggered or how often
run, a build always begins by retrieving
code from the source code repository.

 Unless terminated prematurely, the end
product of a build is always executable
code (define semantics of
“executable”).

 Notification of build status always
occurs through a feedback mechanism.

A Roadmap to Continuous

Integration

—28—

August 16, 2010

The “Integrate Button” Metaphor

Figure 2: The “Integrate Button” Metaphor

Source: Duvall et al. (2007)

A Roadmap to Continuous

Integration

—29—

August 16, 2010

Build Types

There are three basic types of builds: private,
integration, and release

 All builds are automated, script-driven
processes that pull source code from
the repository and create deployable
artifacts

 These build types differ in several ways
» Where, when, by whom, and for what reason they are run

» The code that feeds the process

» What is done with the output

A Roadmap to Continuous

Integration

—30—

August 16, 2010

Build Types (continued…)

● Private Builds

● Run by developers in their local environments (IDE)

● Ensure that code compiles before committing back to source code repository

● Triggered manually

● Very stripped-down and designed to finish quickly

● Integration Builds

● Compile and package the application for testing and quality inspection in
response to recent changes

● Performed on a dedicated build server either on a scheduled basis (nightly) or
continuously

● Usually drawn from the trunk of the repository tree

● Fast or slow depending on the number and type of processes included in the
build script

● Release Builds

● Performed when code is ready to be deployed to other environments

● Performed by the team’s release manager

● Use tagged code from the repository

● Run the full suite of automated and manual tests and inspections

● Tend to be slow

A Roadmap to Continuous

Integration

—31—

August 16, 2010

CI vs. Build Management

Property Continuous Integration Build Management

Build Type Integration Release

Purpose To determine whether the
latest integrated changes
degraded the code quality

To produce an unambiguous set of

artifacts to be released to third

parties outside of development

Audience Development team QA, CM, Operations teams, etc.

Lifecycle Development Boundary between development

and next application lifecycle stage

Source Most current version in

repository (trunk); always

changing

Specific snapshot (tag);

unchanging

Traceability To newly integrated changes To full source snapshot

Degree of
Automation

Completely automated Combination of automated scripts

and manual processes (¿?)

Artifacts Artifacts are a mere by-
product; quality determination
is the primary output

Production of artifacts is
instrumental to the purpose

A Roadmap to Continuous

Integration

—32—

August 16, 2010

Daily builds

"Automate the build."

● daily build: Compile working executable on a daily basis

● allows you to test the quality of your integration so far

● helps morale; product "works every day"; visible progress

● best done automated or through an easy script

● quickly catches/exposes any bug that breaks the build

● Continuous Integration (CI) server: An external
machine that automatically pulls down your latest repo code
and fully builds all resources.

● If anything fails, contacts your team (e.g. by email).

● Ensures that the build is never broken for long.

A Roadmap to Continuous

Integration

—33—

August 16, 2010

Build from command line

● An Android project needs a build.xml to be used by
Ant.

● This file allows your project to be compiled from
the command line, making automated builds
possible.

<?xml version="1.0" encoding="UTF-8"?>

<project name="MainActivity" default="help">

 <property file="ant.properties" />

 <import file="${sdk.dir}/tools/ant/build.xml" />

 <taskdef name="findbugs" classname="edu.umd.cs.findbugs.anttask.FindBugsTask"/>

 <target name="findbugs">

 <findbugs home="${findbugs.home}" output="xml" outputFile="findbugs.xml" excludeFilter="findbugs-exclude.xml">

 <auxClasspath path="${android.jar}" />

 <auxClasspath path="${rt.jar}" />

 <auxClasspath path="libs\android-support-v4.jar" />

 <class location="${out.dir}" />

 </findbugs>

 </target>

 <taskdef resource="checkstyletask.properties" classpath="${basedir}/libs/checkstyle-5.6-all.jar"/>

 <checkstyle config="sun_checks.xml" failonviolation="false">

 <fileset dir="src" includes="**/*.java"/>

 <formatter type="plain"/>

 <formatter type="xml" toFile="checkstyle-result.xml"/>

 </checkstyle>

</project>

A Roadmap to Continuous

Integration

—34—

August 16, 2010

The Importance of Fast Builds

● In general, the more processes included in
the build, the better the quality of the final
product; however, there are tradeoffs.

● Each subprocess takes time to execute;
extra steps result in loss of productivity, as
developers wait for long build cycles to
complete before they can continue working.

● Frustration with overly long builds* can be a
significant roadblock to team acceptance of
the CI process.

* Kent Beck, in his book Extreme Programming Explained (2004), suggests a 10-

minute limit for basic integration builds. Some developers would consider even 10

minutes to be too long a time.

http://www.amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/0321278658

A Roadmap to Continuous

Integration

—35—

August 16, 2010

Improving Build Speed

● Three approaches to dealing with build
speed:

● Speed up the build by eliminating bottlenecks or by running the
build on a faster machine with plenty of memory.

● Run complete builds less often or at a time when developers are
less likely to be working, and run only basic builds on a
continuous basis.

● Employ a “staged build” approach in which the basic build
executes to validate code that developers have just checked in,
after which a second process completes the remaining steps.

● A combination of the three approaches is
often used.

Introducción

Escenarios

Integración continua
• Definición

• Arquitectura

• Builds

• Servidor de CI

• Pruebas y CI

• Inspección

• Feedback

• Pros/cons

• Herramientas

• Lo esencial

Resumen

Bibliografía

A Roadmap to Continuous

Integration

—37—

August 16, 2010

The CI Build Server

● CI build servers provide many valuable
services:
● Polling for changes in the source code repository, which trigger

a new build

● Avoiding overlapping builds (due to repository commits very
close together in time) by specifying a configurable quiet-time
interval

● Support for different scripting tools and source code repositories

● Support for a variety of notification mechanisms

● Logging of build results to provide a history of previous builds

● Tagging of build numbers

● Web-based configuration and reporting of build results

● Support for distributed builds via a master/slave architecture

Introducción

Escenarios

Integración continua
• Definición

• Arquitectura

• Builds

• Servidor de CI

• Pruebas y CI

• Inspección

• Feedback

• Pros/cons

• Herramientas

• Lo esencial

Resumen

Bibliografía

Automated tests

"Make your build self-testing."

● automated tests: e.g. Tests that can be run
from the command line on your project code
at any time.

● can be unit tests, coverage, static analysis /
style checking, ...

● smoke test: A quick set of tests run on the
daily build.

● NOT exhaustive; just sees whether code
"smokes" (breaks)

● used (along with compilation) to make sure
daily build runs

A Roadmap to Continuous

Integration

—40—

August 16, 2010

Automated Processes:Continuous Testing

Automated testing is an important component of the CI build cycle.

Test Type Description Impact on CI

Build

Unit Tests discrete units of code to

verify correct behavior;

written and performed by

developers as part of the

development process.

Easily included in the

build cycle; very low

impact on build

speed.

Integration/

Component

Tests to verify specific

components, including their

interaction with other internal

and external components;

may exercise code not

exposed to clients or end

users.

May be included in

the build cycle; tends

to run longer than

unit tests so there is

some impact on build

speed.

A Roadmap to Continuous

Integration

—41—

August 16, 2010

Continuous Testing (continued…)

 Test Type Description Impact on CI Build

Functional

(Regression)

Tests all aspects of the fully

deployed system, exercising

all actions that may be taken

by end users; may use a wide

range of input data to force

errors; fully aligns with use

cases; specialized tools allow

feature-by-feature capture of

user actions as executable

scripts that can be run on an

automated basis.

The impact on build

speed may be

significant; should not

be a part of builds that

run every time code

changes; appropriate

for nightly runs or a

staged build process.

Functional

(Targeted)

Tests only specific features

that were changed for a

particular build.

Minimal impact on build

speed since only a

small part of the full

application is tested.

A Roadmap to Continuous

Integration

—42—

August 16, 2010

Continuous Testing (continued…)

non-functional

 Test Type Description Impact on CI Build

Load Subjects the application to

levels of use approaching and

beyond the limits of its

specification to ascertain the

maximum amount of work a

system can handle without

significant performance

degradation.

The impact on build

speed may be

significant; should not

be a part of builds that

run every time code

changes; appropriate

for nightly runs or a

staged build process.

Stress

Evaluates the extent to which a

system keeps working when

subjected to extreme work

loads or when some of its

hardware or software has been

compromised; includes

availability or resistance to

denial of service (DoS) attacks.

The impact on build

speed may be

significant; should not

be a part of builds that

run every time code

changes; appropriate

for nightly runs or a

staged build process.

A Roadmap to Continuous

Integration

—43—

August 16, 2010

Continuous Testing (continued…)

non-functional

Test Type Description Impact on CI Build

Security Used in conjunction with manual

or automated functional testing.

Many types of tools for web

application security assessment

exist, such as source-code

analyzers, web application

(black-box) scanners, database

scanners, binary analysis tools,

runtime analysis tools,

configuration analysis tools, and

proxies. Proxies, for example,

watch what the user or test

script does and report potential

security holes.

The impact on build

speed could be

significant; should not

be a part of builds that

run every time code

changes; appropriate

for nightly runs or a

staged build process.

A Roadmap to Continuous

Integration

—44—

August 16, 2010

Integration testing

● integration testing: Verifying software
quality by testing two or more dependent
software modules as a group.

● challenges:

● Combined units can fail
in more places and in more
complicated ways.

● How to test a partial system
where not all parts exist?

● How to "rig" the behavior of
unit A so as to produce a
given behavior from unit B?

A Roadmap to Continuous

Integration

—45—

August 16, 2010

Stubs

● stub: A controllable replacement for an
existing software unit to which your code
under test has a dependency.

● useful for simulating difficult-to-control
elements:

● network / internet

● database

● time/date-sensitive code

● files

● threads

● memory

A Roadmap to Continuous

Integration

—46—

August 16, 2010

Create a stub, step 1

● Identify the external dependency.

● This is either a resource or a
class/object.

● If it isn't an object, wrap it up into one.

● (Suppose that Class A depends on
troublesome Class B.)

A Roadmap to Continuous

Integration

—47—

August 16, 2010

Create a stub, step 2

● Extract the core functionality of the
object into an interface.

● Create an InterfaceB based on B

● Change all of A's code to work with type
InterfaceB, not B

A Roadmap to Continuous

Integration

—48—

August 16, 2010

Create a stub, step 3

● Write a second "stub" class that also
implements the interface,
but returns pre-determined fake data.

● Now A's dependency on B is dodged
and can be tested easily.

● Can focus on how well A integrates
with B's external behavior.

A Roadmap to Continuous

Integration

—49—

August 16, 2010

Injecting a stub

● seams: Places to inject the stub so Class A will talk to it.

● at construction (not ideal)

 A aardvark = new A(new StubB());

● through a getter/setter method (better)

 A apple = new A(...);

 aardvark.setResource(new StubB());

● just before usage, as a parameter (also better)

 aardvark.methodThatUsesB(new StubB());

● You should not have to change A's code everywhere
(beyond using your interface) in order to use your Stub
B. (a "testable design")

Introducción

Escenarios

Integración continua
• Definición

• Arquitectura

• Builds

• Servidor de CI

• Pruebas y CI

• Inspección

• Feedback

• Pros/cons

• Herramientas

• Lo esencial

Resumen

Bibliografía

A Roadmap to Continuous

Integration

—51—

August 16, 2010

Continuous Code Inspection

A stated objective of CI is to integrate
frequently in order to detect and remedy
quality issues as they are introduced.

• Code quality issues are not just errors that cause compile-time
or runtime problems.

• Tangled, hard-to-read, overly complex, undocumented, and
inconsistently formatted code may compile, but committing this
kind of code to the repository is not a good practice.

• Many teams apply stylistic standards for “clean” code in their
particular language, a process that can be automated.

51

A Roadmap to Continuous

Integration

—52—

August 16, 2010

Continuous Code Inspection (continued…)

● Automated processes are very good at code inspection, once a set
of standards has been defined.

● Noncompliance with team standards can cause a build to fail or simply
to be reported.

● Tools are available for most programming languages.

● Rules can be based on a project's coding standards.

● Can be run inside an IDE or in a build tool such as Ant.

● Tools are available to not only enforce style and format compliance but
also reduce code complexity, eliminate duplicated code, and ensure
complete unit test coverage.

● Continuous code inspection allows the team to concentrate on the
important issues during peer reviews, such as alignment with
requirements and sound architecture and design.

Introducción

Escenarios

Integración continua
• Definición

• Arquitectura

• Builds

• Servidor de CI

• Pruebas y CI

• Inspección

• Feedback

• Pros/cons

• Herramientas

• Lo esencial

Resumen

Bibliografía

A Roadmap to Continuous

Integration

—54—

August 16, 2010

Feedback

● Is essential to the purpose of CI
● Without notification the team has no way of knowing whether

recent changes introduced new problems.

● Can take many forms and be directed at
many stakeholders

● Must be managed carefully
● “Spam Feedback” is a CI anti-pattern in which team members

become inundated with build status e-mails, to the point where
they start to ignore messages.

● Is most effective when it directs the right
information to the right people in the
right situation and uses the right
methods

A Roadmap to Continuous

Integration

—55—

August 16, 2010

Feedback (continued…)

There are many ways to send notification of build status:

 E-mail: Provides build status at discrete points in time

 RSS: Pushes alerts regarding build status to an RSS reader

 SMS: Provides build status with text messages sent to cell phone

 Visual devices: Ambient Orb, X10 Lava lamps

 Twitter: Provides build status with “tweets” sent to Twitter account

 Sounds: Provides build status through sound

 Displays: Provides feedback through an LCD monitor

 Instant Message: Allows for instantaneous notification via IM

 Browser plug-ins: Provides build status in the browser status bar

 Widgets: Display the build status on the user's desktop

Introducción

Escenarios

Integración continua
• Definición

• Arquitectura

• Builds

• Servidor de CI

• Pruebas y CI

• Inspección

• Feedback

• Pros/cons

• Herramientas

• Lo esencial

Resumen

Bibliografía

A Roadmap to Continuous

Integration

—57—

August 16, 2010

Benefits of CI

● Increased productivity

● Enables shorter feedback cycle when changes are made

● Code is kept in a “releasable” state

● Code gets back into the hands of testers quickly

● Frees the team to do more interesting and valuable work

● Improves morale, making it easier to retain good developers

● Enables more frequent releases with new features

● Improved quality

● Makes it easier to find and remove defects because frequent integration and
testing identifies bugs as they are introduced.

● Multi-platform builds help in finding problems that may arise on some, but not
all, versions of the supported platform.

● Reduced Risk

● Reduces uncertainty greatly because at all times the team knows what works,
what does not, and what the major issues are.

A Roadmap to Continuous

Integration

—58—

August 16, 2010

Barriers to CI

● Why doesn't every team already practice CI?

● It is not easy.

● Establishing a solid CI practice takes a lot of work and technical
knowledge.

● A number of new tools and processes must be mastered.

● Setting up a CI server requires that the build, unit test, and executable
packaging processes all be automated.

● Requires mastering a build scripting language, a unit testing platform,
and potentially a setup/install platform as well.

● Duvall (2007) says, “I often hear statements like ‘CI doesn't work
for large projects’ or ‘our project is so unique that CI won't work’
when, in fact, CI isn't the issue at all — it's the ineffective
application, or nonexistence, of certain practices that have led to
frustration.”

Introducción

Escenarios

Integración continua
• Definición

• Arquitectura

• Builds

• Servidor de CI

• Pruebas y CI

• Inspección

• Feedback

• Pros/cons

• Herramientas

• Lo esencial

Resumen

Bibliografía

A Roadmap to Continuous

Integration

—60—

August 16, 2010

Build Servers

A comprehensive and up-to-date listing of
the many open source and commercial CI
build servers available today is maintained
on the ThoughtWorks CI Feature Matrix.*

• At this time, 25 products are compared on dozens of
attributes.

• Adds products and attributes as they are identified.

• Attempts an unbiased comparison of servers to assist
teams considering CI adoption in selecting an appropriate
product.

• Identifies the most important features for companies and
projects involved in the developing CI build servers.

• Does not provide market share information.

* See http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix

The most important criterion in choosing a tool is whether it does what you need it to do.
-- Duvall et al. (2007)

http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix
http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix

A Roadmap to Continuous

Integration

—61—

August 16, 2010

Build Servers:What are People Saying?

● Using an online survey of software
professionals with an interest in CI,
Fleisher (2009) attempted to learn which
CI servers people are using and why.

● He identified 12 products and reported
their support for:
● automated build tools
● version control systems
● build triggers
● test frameworks
● notification mechanisms
● integration with IDEs
● access control
● multi-platform builds
● history builds
● virtualized environments
● extensibility

A Roadmap to Continuous

Integration

—62—

August 16, 2010

Build Servers: Survey Results

Solution Company/Project
Open

Source

First

Release
URL

AnthillPro Urbancode ‐ 2001 http://www.anthillpro.com

Bamboo Atlassian ‐ 2007 http://www.atlassian.com

Continuum Apache project yes 2005 http://continuum.apache.org

Cruise * ThoughtWorks ‐ 2008 http://studios.thoughtworks.com/cruise

CruiseControl Sourceforge project yes 2001 http://cruisecontrol.sourceforge.net

FinalBuilder VSoft Technologies ‐ 2001 http://www.FinalBuilder.com

Hudson java.net project yes 2007 http://hudson.dev.java.net

Lunt build Javaforge project yes 2004 http://luntbuild.javaforge.com

Parabuild Viewtier ‐ 2005 http://www.viewtier.com

Pulse Zutubi yes 2006 http://www.zutubi.com

Quick build ** PMEase yes 2004 http://www.pmease.com

TeamCity JetBrains yes 2006 http://www.jetbrains.com/teamcity

CI Servers from Fleisher (2009)

* Cruise is a successor to CruiseControl

** Quick build is the commercial version of Lunt build

http://www.anthillpro.com/
http://www.atlassian.com
http://continuum.apache.org
http://studios.thoughtworks.com/cruise
http://cruisecontrol.sourceforge.net
http://www.FinalBuilder.com
http://hudson.dev.java.net
http://luntbuild.javaforge.com
http://www.viewtier.com
http://www.zutubi.com
http://www.pmease.com
http://www.jetbrains.com/teamcity

A Roadmap to Continuous

Integration

—63—

August 16, 2010

Build Servers:Survey Results

It is not surprising that CruiseControl fared so well in this survey, since it

has been around the longest of any of the open source solutions (since

2001). What is worth noting is the strong showing by Hudson, a full-

featured but rather new entry in the field (since 2007).

Source: Fleisher (2009)

A Roadmap to Continuous

Integration

—64—

August 16, 2010

Automated Build Tools

Build automation is the scripting of tasks that
developers perform in preparing their applications for
deployment to runtime environments. Tasks include:

 Version control integration

 Dependency resolution

 Code quality analysis

 Compiling source code into binary code

 Packaging the binary code into deployable archives

 Running tests

 Deployment to different environments

 File system manipulation (creating, copying, and deleting
files and directories)

 Creating documentation and or release notes

A Roadmap to Continuous

Integration

—65—

August 16, 2010

Automated Build Tools (continued…)

Tool Platform Description

Ant Java Most widely-used build tool for Java; extensive functionality; uses XML configuration; run from

command line or various build servers and IDEs

http://ant.apache.org/

Maven 1 Java A software “project management” tool; manages project build, reporting, and documentation from a

central piece of information; integrated dependency management

http://maven.apache.org/maven-1.x/

Maven 2/3 Java Same as Maven 1 but significantly enhanced with many new features and better performance; support

for transitive dependencies; improved plug-in architecture

http://maven.apache.org/

Gant Groovy/Java An alternative way of scripting things with Ant, uses the Groovy programming language rather than XML

to specify the rules

http://gant.codehaus.org/

Nant .NET .NET build tool. In theory it is like make without make's “wrinkles.” In practice it is a lot like Ant,

including using XML as a scripting syntax

http://nant.sourceforge.net/

setup.py Python The standard setuptools module included in Python

http://pypi.python.org/pypi/setuptools

Pip Python A modern replacement for the standard Python package installer (easy_install) with native support for

most version control systems

http://pip.openplans.org/

virtualenv Python Provides virtualized Python installs so you can have multiple Python projects on the same system

without the possibility of interference or needing administration rights to install software

http://pypi.python.org/pypi/virtualenv

Buildout Python A Python-based build system for creating, assembling and deploying applications from multiple parts,

some of which may be non-Python-based. It lets you create a buildout configuration and reproduce the

same software later

http://www.buildout.org/

This list is never complete

http://ant.apache.org/
http://maven.apache.org/maven-1.x/
http://maven.apache.org/maven-1.x/
http://maven.apache.org/maven-1.x/
http://maven.apache.org/
http://gant.codehaus.org/
http://nant.sourceforge.net/
http://pypi.python.org/pypi/setuptools
http://pypi.python.org/pypi/setuptools
http://pip.openplans.org/
http://pypi.python.org/pypi/virtualenv
http://www.buildout.org/

A Roadmap to Continuous

Integration

—66—

August 16, 2010

Automated Test Tools: Unit Testing

Tool Platform Description

Junit Java The de facto standard for unit testing in Java

http://junit.org/

TestNG Java Designed to overcome many of the perceived deficiencies of JUnit; supports test groups, dependencies,

and parallel testing; integrates well with IDEs and build tools and servers

http://www.testng.org

Cactus Java Cactus is a simple test framework for integration unit testing server-side java code (Servlets, EJBs, Tag

Libs, Filters, etc.

http://jakarta.apache.org/cactus/

DbUnit Java A JUnit extension targeted at database-driven projects that, puts the database into a known state

between test runs; has the ability to export and import your database data to and from XML datasets

http://www.dbunit.org/

Nunit .NET Includes GUI, command line, integrates into VisualStudio with ReSharper

http://www.nunit.org

PyUnit Python The Python language version of JUnit; part of Python's standard library

http://pyunit.sourceforge.net/

Nose Python A discovery-based unittest extension; includes many options including code test coverage

http://somethingaboutorange.com/mrl/projects/nose/

MXUnit ColdFusion Unit Test Framework and Eclipse Plugin for CFMX

http://mxunit.org/

CFUnit ColdFusion CFUnit is a unit testing framework for ColdFusion modeled after the JUnit framework

http://cfunit.sourceforge.net/

CFCUnit ColdFusion A full-fledged framework for unit testing ColdFusion code based on JUnit

http://www.cfcunit.org/cfcunit/

Unit testing tools are ubiquitous. This is a small selection of the better-known products. For a

comprehensive listing in a multitude of languages, see:

http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks.

http://junit.org/
http://www.testng.org
http://jakarta.apache.org/cactus/
http://www.dbunit.org/
http://www.nunit.org
http://pyunit.sourceforge.net/
http://somethingaboutorange.com/mrl/projects/nose/
http://mxunit.org/
http://cfunit.sourceforge.net/
http://www.cfcunit.org/cfcunit/
http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks.

A Roadmap to Continuous

Integration

—67—

August 16, 2010

Automated Test Tools: Performance Testing

Tool Platform Description

JMeter Java An open source desktop application designed to load test functional behavior and

measure performance; 100% Java; originally designed for testing Web Applications

but has since expanded to other test functions; extensive documentation describes

how to use its many features and provides many examples; a special Ant task allows

for automation by executing load tests while providing a way to pass in optional

parameters and properties (see Duvall, 2008).

http://jakarta.apache.org/jmeter/

Funkload Python Automated functional testing and detailed performance analysis

http://funkload.nuxeo.org/

PyLot Python PyLot: performance and scalability testing, with correct result validation

http://www.pylot.org/gettingstarted.html

Most compilations of software performance testing tools on the Internet do not

differentiate among the different types, so tools for load testing, stress testing,

stability testing, etc., are lumped together under “performance testing.” For

example, see http://www.opensourcetesting.org/performance.php.

http://jakarta.apache.org/jmeter/
http://funkload.nuxeo.org/
http://www.pylot.org/gettingstarted.html
http://jcsc.sourceforge.net/

A Roadmap to Continuous

Integration

—68—

August 16, 2010

Automated Test Tools:
Web Application Functional Testing

Tool Platform Description

Selenium Remote

Control (RC)

Selenium

Integrated

Development

Environment (IDE)

Web/Java Created in 2004, Selenium RC is a test tool that allows the tester to write automated

web application UI tests in any programming language against any HTTP website

using any mainstream JavaScript-enabled browser. Selenium RC comes in two parts.

A server that automatically launches and shuts down browsers and acts as a HTTP

proxy for web requests from them.

Client libraries for the preferred computer language (Java, Python, Perl, Ruby, PHP,

C#, etc.).

Selenium IDE is a complete integrated development environment for recording,

editing, and running Selenium tests. It is implemented as a Firefox plug-in. Tests

written with Selenium IDE may be run later on Selenium RC, since both products use

the same test execution engine, known as Selenium Core.

http://seleniumhq.org/projects/remote-control/

http://seleniumhq.org/projects/ide/

Windmill Web/Python Windmill is a web testing tool designed to automate testing and debugging web

applications

http://www.getwindmill.com/

Among the many compilations of links to functional test sites

found was the one at SoftwareQATest.com

(http://www.softwareqatest.com/qatweb1.html#FUNC).

http://seleniumhq.org/projects/remote-control/
http://seleniumhq.org/projects/remote-control/
http://seleniumhq.org/projects/remote-control/
http://seleniumhq.org/projects/ide/
http://www.getwindmill.com/
http://www.atlassian.com/software/clover/

A Roadmap to Continuous

Integration

—69—

August 16, 2010

Automated Test Tools:
Web Application Functional Testing
(continued…)

Tool Platform Description

WebTest Web/Java Canoo WebTest is a free open source tool for automated testing of web applications that

has existed since 2001. WebTest is plain Java and runs everywhere as long as there is a

Java development kit installed on the operating system. WebTest scripts are Ant scripts,

which means an easy integration path to CI servers such as CruiseControl and Hudson.

Simple and fast, no display is needed (uses HtmlUnit), although Javascript support is not

as good as in "normal" browser. Easily extended using Java or Groovy

http://webtest.canoo.com/

twill Web/Python twill is a simple scripting language that allows users to browse the Web from a command-

line interface

http://twill.idyll.org/

Funkload Web/Python Automated functional testing and detailed performance analysis

http://funkload.nuxeo.org/

http://webtest.canoo.com/
http://twill.idyll.org/
http://funkload.nuxeo.org/

A Roadmap to Continuous

Integration

—70—

August 16, 2010

Automated Test Tools: Security Testing

Tool Platform Description

ratproxy Web Ratproxy is a web application security auditing tool. It is a passive proxy, watching data

sent between a browser and a web application. Detects and prioritizes broad classes of

security problems, such as dynamic cross-site trust model considerations, script inclusion

issues, content serving problems, insufficient XSRF and XSS defenses, and much more.

When you test a web application, either manually or using Selenium, ratproxy can watch

what you are doing and report any potential security holes it sees.

http://code.google.com/p/ratproxy/

Paros Web Another proxy with active scanning support and varying degrees of automation

http://www.parosproxy.org/

WebScarab Web Another proxy with active scanning support and varying degrees of automation; available

through the Open Web Application Security Project (OWASP), a worldwide free and open

community focused on improving the security of application software

http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

SoftwareQATesting.com also lists many projects in the subject area

of Web site security testing (see

http://www.softwareqatest.com/qatweb1.html#SECURITY).

http://code.google.com/p/ratproxy/
http://www.parosproxy.org/
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.softwareqatest.com/qatweb1.html

A Roadmap to Continuous

Integration

—71—

August 16, 2010

Code Inspection Tools

Tool Platform Description

Checkstyle Java Checkstyle is a development tool to help programmers write Java code that adheres to a coding standard. It

automates the process of checking Java code to spare humans of this boring (but important) task.

http://checkstyle.sourceforge.net/

JavaNCSS Java JavaNCSS is a simple command line utility that determines the lengths of methods and classes (a metric for

complexity) by examining the Java source code.

http://www.kclee.de/clemens/java/javancss/

JCSC Java JCSC is a powerful tool to check source code against a highly definable coding standard and potential bad

code; similar to Checkstyle.

http://jcsc.sourceforge.net/

PMD Java PMD scans Java source code and looks for potential problems such as possible bugs, dead code, suboptimal

code, overcomplicated expressions, and duplicated code.

http://pmd.sourceforge.net/

FindBugs Java A program which uses static analysis to look for bugs in Java code; looks for bug patterns, inspired by real

problems in real code.

http://findbugs.sourceforge.net/

Sonar Java Sonar leverages the existing ecosystem of quality open source tools (e.g., Checkstyle, PMD, Maven,

Cobertura, etc.) to offer a fully integrated solution to development environments and continuous integration

tools.

http://sonar.codehaus.org/

Clover Java Clover measures code coverage generated by system tests, functional tests or unit tests, allowing you to

improve test quality and find bugs sooner. (Commercial).

http://www.atlassian.com/software/clover/

Cobertura Java Cobertura is a free Java tool that calculates the percentage of code accessed by tests. It can be used to

identify which parts of a Java program are lacking test coverage. It is based on jcoverage.

http://cobertura.sourceforge.net/

There are many tools that provide code inspection via static and dynamic analysis

of the source code. A partial listing is shown:

http://checkstyle.sourceforge.net/
http://www.kclee.de/clemens/java/javancss/
http://jcsc.sourceforge.net/
http://pmd.sourceforge.net/
http://findbugs.sourceforge.net/
http://sonar.codehaus.org/
http://www.atlassian.com/software/clover/
http://cobertura.sourceforge.net/

A Roadmap to Continuous

Integration

—72—

August 16, 2010

Code Inspection Tools (continued…)

Tool Platform Description

EMMA Java Another free Java code coverage tool.

http://emma.sourceforge.net/

FxCop .NET FxCop is an application that analyzes managed code assemblies and reports information about the

assemblies, such as possible design, localization, performance, and security improvements.

http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx

Ncover .NET NCover is a test coverage tool for the .NET platform; (Commercial).

http://www.ncover.com/

Pylint Python Pylint is a python tool that checks if a module satisfies a coding standard; checks line-code length, variable

name standard compliance, and more.

http://www.logilab.org/857

Pyflakes Python Pyflakes is a program that analyzes Python programs and detects various errors. It works by parsing the

source file rather than importing it, so it is safe to use on modules with side effects.

http://freshmeat.net/projects/pyflakes/?branch_id=60662&release_id=208696

Clone Digger Python Reports code in Python or Java programs which appears to be very similar (even with slight variations); a

good place to look for bugs and bad practice.

http://clonedigger.sourceforge.net/

JSLint Python The popular JavaScript lint utility from jslint.com (http://jslint.com) can be run from the command-line using

Rhino.

http://www.jslint.com/rhino/index.html

CSS Validator Python Can be run as a command-line tool as of earlier this year. http://jigsaw.w3.org/css-

validator/DOWNLOAD.html

Coverage.py Python Provides annotated code coverage reports and has been

integrated into several of the common Python test suites, such as Nose.

http://nedbatchelder.com/code/modules/rees-coverage.html

QueryParam

Scanner

ColdFusion qpScanner is a simple tool that scans the ColdFusion codebase checking to see if there are any CFML

variables in queries that are not contained within a cfqueryparam tag.

http://qpscanner.riaforge.org/

varScoper ColdFusion varScoper is a code scanning tool that can be used to identify variables that are not explicitly scoped to be

local or global to a ColdFusion function.

http://varscoper.riaforge.org/

http://emma.sourceforge.net/
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
http://www.ncover.com/
http://www.logilab.org/857
http://freshmeat.net/projects/pyflakes/?branch_id=60662&release_id=208696
http://clonedigger.sourceforge.net/
http://jslint.com
http://www.jslint.com/rhino/index.html
http://jigsaw.w3.org/css-validator/DOWNLOAD.html
http://jigsaw.w3.org/css-validator/DOWNLOAD.html
http://jigsaw.w3.org/css-validator/DOWNLOAD.html
http://nedbatchelder.com/code/modules/rees-coverage.html
http://nedbatchelder.com/code/modules/rees-coverage.html
http://nedbatchelder.com/code/modules/rees-coverage.html
http://qpscanner.riaforge.org/
http://varscoper.riaforge.org/

Introducción

Escenarios

Integración continua
• Definición

• Arquitectura

• Builds

• Servidor de CI

• Pruebas y CI

• Inspección

• Feedback

• Pros/cons

• Herramientas

• Lo esencial

Resumen

Bibliografía

Application Lifecycle Management

Introducción

Integración

Integración continua

Resumen

Bibliografía

Índice

Resumen
● ¿Qué hemos aprendido?

● Construir/ensamblar software es algo más que
“compilar”

● La integración es un problema que hay que
tratar

● La integración continua aboga por hacerlo
desde el primer momento

● Automatizar la construcción se convierte en
fundamental

● ¿Qué veremos en las siguientes lecciones?
● Gestión de entregas, liberaciones, cambios…

● En práctica herramientas de construcción,
servidores de integración continua

Introducción

Integración

Integración continua

Resumen

Bibliografía

Índice

Bibliografía

